Skip to main content

Advertisement

Log in

Significantly enhanced energy storage density and efficiency of sandwich polymer-based composite via doped MgO and TiO2 nanofillers

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polymer dielectric materials are attracting wide focus in electronics, but their low energy density limits miniaturization and intelligent application. In recent years, the sandwich-structured has offered an ideal way to enhance the energy storage performance of polymer materials. In this work, the symmetrically sandwich composite dielectrics were prepared, containing an outer layer of poly (vinylidene fluoride-trifluoro ethylene chlorofluoride)@titanium dioxide (P (VDF-TrFE-CFE)@TiO2) and an inner layer of poly (methyl methacrylate)@magnesium oxide (PMMA@MgO). The sandwich structure can combine the advantages of the excellent breakdown strength of PMMA and the superior polarization strength of P (VDF-TrFE-CFE). Moreover, TiO2 with a high dielectric constant further improves the polarization strength, and the insulation performance enhances by MgO with a large band gap. The experimental results show that 0.5–1–0.5 sandwich composite dielectric has the most excellent breakdown strength of 633.8 kV/mm, and a discharge energy density of 17.16 J/cm3 with an efficiency of 70.1%. This work offers experimental guidance for the development of outstanding energy storage performance of polymer dielectric capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Tang T, Yang W, Shen Z et al (2023) Compressible polymer composites with enhanced dielectric temperature stability. Adv Mater 35:2209958. https://doi.org/10.1002/adma.202209958

    Article  CAS  Google Scholar 

  2. Chen J, Wang Y, Chen W (2021) Excellent comprehensive energy storage capabilities achieved in linear polymer composites via inserting acrylic rubber dielectric elastomers. J Mater Chem C 9(14):5000–5007. https://doi.org/10.1039/D0TC05874B

    Article  CAS  Google Scholar 

  3. Yao F-Z, Yuan Q, Wang Q, Wang H (2020) Multiscale structural engineering of dielectric ceramics for energy storage applications: from bulk to thin films. Nanoscale 12(33):17165–17184. https://doi.org/10.1039/D0NR04479B

    Article  CAS  Google Scholar 

  4. Zhou Y, Wang Q (2020) Advanced polymer dielectrics for high temperature capacitive energy storage. J Appl Phys 127(24):240902. https://doi.org/10.1063/5.0009650

    Article  CAS  Google Scholar 

  5. Zhou Y, Zhu Y, Xu W, Wang Q (2023) Molecular trap engineering enables superior high-temperature capacitive energy storage performance in all-organic composite at 200 °C. Adv Energy Mater 13:2203961. https://doi.org/10.1002/aenm.202203961

    Article  CAS  Google Scholar 

  6. Jiang J, Shen Z, Qian J et al (2019) Ultrahigh discharge efficiency in multilayered polymer nanocomposites of high energy density. Energy Storage Mater 18:213–221. https://doi.org/10.1016/j.ensm.2018.09.013

    Article  Google Scholar 

  7. Shang Y, Feng Y, Zhang C, Zhang T, Chi Q (2023) Excellent energy storage performance in polymer composites with insulating and polarized two-dimensional fillers. Compos Part A Appl Sci Manuf 167:107429. https://doi.org/10.1016/j.compositesa.2023.107429

    Article  CAS  Google Scholar 

  8. Clark AG, Salcedo Montero M, Govinna ND, Lounder SJ, Asatekin A, Cebe P (2020) Relaxation dynamics of blends of PVDF and zwitterionic copolymer by dielectric relaxation spectroscopy. J Polym Sci 58(9):1311–1324. https://doi.org/10.1002/pol.20200032

    Article  CAS  Google Scholar 

  9. Chen J, Wang Y, Yuan Q et al (2018) Multilayered ferroelectric polymer films incorporating low-dielectric-constant components for concurrent enhancement of energy density and charge–discharge efficiency. Nano Energy 54:288–296. https://doi.org/10.1016/j.nanoen.2018.10.028

    Article  CAS  Google Scholar 

  10. Ye H, Jiang H, Xu L (2022) Ultrahigh energy storage capability of trilayered polyetherimide/poly(vinylidenefluoride-trifluoroethylene-chlorofluoroethylene) with low loading of boron nitride nanosheets. J Mater Chem C 10(45):17196–17207. https://doi.org/10.1039/D2TC02556F

    Article  CAS  Google Scholar 

  11. Sun Q, Wang J, Zhang L et al (2020) Achieving high energy density and discharge efficiency in multi-layered PVDF–PMMA nanocomposites composed of 0D BaTiO3 and 1D NaNbO3@SiO2. J Mater Chem C 8(21):7211–7220. https://doi.org/10.1039/D0TC00838A

    Article  CAS  Google Scholar 

  12. Wu Q, Feng Z, Cai Z et al (2022) Poly (methyl methacrylate)-based ferroelectric/dielectric laminated films with enhanced energy storage performances. Adv Compos Hybrid Mater 5(2):1137–1144. https://doi.org/10.1007/s42114-022-00451-0

    Article  CAS  Google Scholar 

  13. Feng Q-K, Zhang Y-X, Liu D-F, Song Y-H, Huang L, Dang Z-M (2022) Dielectric and energy storage properties of all-organic sandwich-structured films used for high-temperature film capacitors. Mater Today Energy 29:101132. https://doi.org/10.1016/j.mtener.2022.101132

    Article  CAS  Google Scholar 

  14. Zhang T, Sun Q, Kang F et al (2022) Sandwich-structured polymer dielectric composite films for improving breakdown strength and energy density at high temperature. Compos Sci Technol 227:109596. https://doi.org/10.1016/j.compscitech.2022.109596

    Article  CAS  Google Scholar 

  15. Zhang W, Guan F, Jiang M et al (2022) Enhanced energy storage performance of all-organic sandwich structured dielectrics with FPE and P(VDF–HFP). Compos Part A Appl Sci Manuf 159:107018. https://doi.org/10.1016/j.compositesa.2022.107018

    Article  CAS  Google Scholar 

  16. Zhao Q, Yang L, Chen K et al (2019) Ultra-high discharged energy density in PVDF based composites through inducing MnO2 particles with optimized geometric structure. Nano Energy 65:104007. https://doi.org/10.1016/j.nanoen.2019.104007

    Article  CAS  Google Scholar 

  17. Chen J, Wang Y, Chen W (2021) Superior capacitive energy storage capability in polymer composites induced by polydopamine-coated paraelectric platelets. J Mater Sci 56(15):9395–9407. https://doi.org/10.1007/s10853-021-05883-5

    Article  CAS  Google Scholar 

  18. Wang P, Guo Y, Zhou D et al (2022) High-temperature flexible nanocomposites with ultra-high energy storage density by nanostructured MgO fillers. Adv Funct Mater 32(31):2204155. https://doi.org/10.1002/adfm.202204155

    Article  CAS  Google Scholar 

  19. Jiang Z, Li R, Zhang S-C, Liu W (2005) Semiclassical time evolution of the holes from Luttinger Hamiltonian. Phys Rev B 72(4):045201. https://doi.org/10.1103/PhysRevB.72.045201

    Article  CAS  Google Scholar 

  20. Zhang XL, Liu LF, Liu WM (2013) Quantum anomalous Hall effect and tunable topological states in 3d transition metals doped silicone. Sci Rep 3:2908. https://doi.org/10.1038/srep02908

    Article  Google Scholar 

  21. Ji AC, Xie XC, Liu WM (2007) Quantum magnetic dynamics of polarized light in arrays of microcavities. Phys Rev Lett 99(18):183602. https://doi.org/10.1103/PhysRevLett.99.183602

    Article  CAS  Google Scholar 

  22. Chen J, Huang F, Zhang C, Meng F, Cao L, Lin H (2022) Enhanced energy storage density in poly(vinylidene fluoride-hexafluoropropylene) nanocomposites by filling with core-shell structured BaTiO3@MgO nanoparticals. J Energy Storage 53:105163. https://doi.org/10.1016/j.est.2022.105163

    Article  Google Scholar 

  23. Sun B, Hu P, Ji X et al (2022) Excellent stability in polyetherimide/SiO2 nanocomposites with ultrahigh energy density and discharge efficiency at high temperature. Small 18(28):e2202421. https://doi.org/10.1002/smll.202202421

    Article  CAS  Google Scholar 

  24. Guo Y, Zhou D, Xu R et al (2022) Enhancement in the energy storage performance of P (VDF–HFP)-based composites by adding PLZST inorganic nanoparticles. J Mater Chem A 10(41):22058–22066. https://doi.org/10.1039/D2TA04302E

    Article  CAS  Google Scholar 

  25. Shang Y, Feng Y, Zhang C, Zhang T, Lei Q, Chi Q (2022) Double gradient composite dielectric with high energy density and efficiency. J Mater Chem A 10(28):15183–15195. https://doi.org/10.1039/D2TA02279F

    Article  CAS  Google Scholar 

  26. Jing L, Li W, Gao C, Li M, Fei W (2022) Excellent energy storage properties achieved in PVDF-based composites by designing the lamellar-structured fillers. Compos Sci Technol 227:109568. https://doi.org/10.1016/j.compscitech.2022.109568

    Article  CAS  Google Scholar 

  27. Huang X, Sun B, Zhu Y, Li S, Jiang P (2019) High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications. Prog Mater Sci 100:187–225. https://doi.org/10.1016/j.pmatsci.2018.10.003

    Article  CAS  Google Scholar 

  28. Li Z, Liu F, Li H et al (2019) Largely enhanced energy storage performance of sandwich-structured polymer nanocomposites with synergistic inorganic nanowires. Ceram Int 45(7):8216–8221. https://doi.org/10.1016/j.ceramint.2019.01.124

    Article  CAS  Google Scholar 

  29. Zhao D, Cai Q, Zhu X et al (2022) Multilayer dielectric nanocomposites with cross-linked dielectric transition Interlayers for high-temperature applications. ACS Appl Mater Interfaces 14(37):42531–42540. https://doi.org/10.1021/acsami.2c12590

    Article  CAS  Google Scholar 

  30. Chi Q, Gao Z, Zhang T et al (2018) Excellent energy storage properties with high-temperature stability in sandwich-structured polyimide-based composite films. ACS Sustain Chem Eng 7(1):748–757. https://doi.org/10.1021/acssuschemeng.8b04370

    Article  CAS  Google Scholar 

  31. Zhu L, Wang Q (2012) Novel ferroelectric polymers for high energy density and low loss dielectrics. Macromolecules 45(7):2937–2954. https://doi.org/10.1021/ma2024057

    Article  CAS  Google Scholar 

  32. Kato T, Yoshio M, Ichikawa T, Soberats B, Ohno H, Funahashi M (2017) Transport of ions and electrons in nanostructured liquid crystals. Nat Rev Mater 2(4):17001. https://doi.org/10.1038/natrevmats.2017.1

    Article  Google Scholar 

  33. Wang C, He G, Chen S, Zhai D, Luo H, Zhang D (2021) Enhanced performance of all-organic sandwich structured dielectrics with linear dielectric and ferroelectric polymers. J Mater Chem A 9(13):8674–8684. https://doi.org/10.1039/D1TA00974E

    Article  CAS  Google Scholar 

  34. Sun L, Shi Z, He B et al (2021) Asymmetric trilayer all-polymer dielectric composites with simultaneous high efficiency and high energy density: a novel design targeting advanced energy storage capacitors. Adv Funct Mater 31(35):2100280. https://doi.org/10.1002/adfm.202100280

    Article  CAS  Google Scholar 

  35. Fan Z, Zhang Y, Jiang Y, Luo Z, He Y, Zhang Q (2022) Polymer composites with high energy density and charge–discharge efficiency at high temperature using aluminum oxide particles. J Mater Res Technol 18:4367–4374. https://doi.org/10.1016/j.jmrt.2022.04.117

    Article  CAS  Google Scholar 

  36. Li Z, Shen Z, Yang X et al (2021) Ultrahigh charge-discharge efficiency and enhanced energy density of the sandwiched polymer nanocomposites with poly(methyl methacrylate) layer. Compos Sci Technol 202:108591. https://doi.org/10.1016/j.compscitech.2020.108591

    Article  CAS  Google Scholar 

  37. Chen S, Lv X, Han X, Luo H, Bowen CR, Zhang D (2018) Significantly improved energy density of BaTiO3 nanocomposites by accurate interfacial tailoring using a novel rigid-fluoro-polymer. Polym Chem 9(5):548–557. https://doi.org/10.1039/C7PY01914A

    Article  CAS  Google Scholar 

  38. Lin Y, Sun C, Zhan S, Zhang Y, Yuan Q (2020) Ultrahigh discharge efficiency and high energy density in sandwich structure K0.5Na0.5NbO3 nanofibers/poly(vinylidene fluoride) composites. Adv Mater Interf 7(9):2000033. https://doi.org/10.1002/admi.202000033

    Article  CAS  Google Scholar 

  39. Zhang M, Shi Z, Zhang J et al (2021) Greatly enhanced dielectric charge storage capabilities of layered polymer composites incorporated with low loading fractions of ultrathin amorphous iron phosphate nanosheets. J Mater Chem C 9(32):10414–10424. https://doi.org/10.1039/D1TC01974K

    Article  CAS  Google Scholar 

  40. Wang Y, Cui J, Wang L et al (2017) Compositional tailoring effect on electric field distribution for significantly enhanced breakdown strength and restrained conductive loss in sandwich-structured ceramic/polymer nanocomposites. J Mater Chem A 5(9):4710–4718. https://doi.org/10.1039/C6TA10709E

    Article  CAS  Google Scholar 

  41. Wang P-J, Zhou D, Li J et al (2020) Significantly enhanced electrostatic energy storage performance of P(VDF–HFP)/BaTiO3-Bi(Li0.5Nb0.5)O3 nanocomposites. Nano Energy 78:105247. https://doi.org/10.1016/j.nanoen.2020.105247

    Article  CAS  Google Scholar 

  42. Mao P, Wang J, Zhang L et al (2020) Tunable dielectric polarization and breakdown behavior for high energy storage capability in P(VDF–TrFE–CFE)/PVDF polymer blended composite films. Phys Chem Chem Phys 22(23):13143–13153. https://doi.org/10.1039/D0CP01071E

    Article  CAS  Google Scholar 

  43. Sun L, Shi Z, Wang H et al (2020) Ultrahigh discharge efficiency and improved energy density in rationally designed bilayer polyetherimide–BaTiO3/P(VDF–HFP) composites. J Mater Chem A 8(11):5750–5757. https://doi.org/10.1039/D0TA00903B

    Article  CAS  Google Scholar 

  44. Zhang Y, Chi Q, Liu L et al (2017) Enhanced electric polarization and breakdown strength in the all-organic sandwich-structured poly(vinylidene fluoride)-based dielectric film for high energy density capacitor. APL Mater 5(7):076109. https://doi.org/10.1063/1.4995653

    Article  CAS  Google Scholar 

  45. Cui Y, Wang X, Zhang T, Zhang C, Chi Q (2019) Optimizing sandwich-structured composites based on the structure of the filler and the polymer matrix: toward high energy storage properties. RSC Adv 9(57):33229–33237. https://doi.org/10.1039/C9RA06256D

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 52007042), Natural Science Foundation of Heilongjiang Province of China (Nos. LH2020E091), Heilongjiang Postdoctoral Financial Assistance (No. LBHZ20021), University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (No. UNPYSCT- 2020180).

Author information

Authors and Affiliations

Authors

Contributions

CZ: methodology, writing—review and editing. HW: data curation, software, writing—original draft. TZ: methodology, writing—review and editing. YZ: supervision. YZ: supervision. CT: supervision.

Corresponding authors

Correspondence to Tiandong Zhang or Chao Tang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical approval

Not applicable.

Additional information

Handling Editor: Jean-Francois Gohy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2148 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Wang, H., Zhang, T. et al. Significantly enhanced energy storage density and efficiency of sandwich polymer-based composite via doped MgO and TiO2 nanofillers. J Mater Sci 58, 12724–12735 (2023). https://doi.org/10.1007/s10853-023-08809-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08809-5

Navigation