Skip to main content
Log in

Fabrication and characterization of waterborne polyurethane (WPU) with aluminum trihydroxide (ATH) and mica as flame retardants

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Flame-retardant polymer composites with specific, finely dispersed fillers were obtained using eco-friendly water-based polyurethane adhesives for coatings on wood panels and were composed of waterborne polyurethane (WPU), aluminum trihydroxide (ATH) and mica. WPU was synthesized from the polycondensation of isophorone diisocyanate (IPDI), polyethylene glycol (PEG), poly(propylene glycol) (PPG), ethylenediamine (EDA), 2,2′-bis(hydroxymethyl)-propionic acid (DMPA) and triethylamine (TEA). These composites were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), transmission electron microscopy (TEM), flammability testing, environmental testing and impact resistance testing. It was shown that the WPU can serve as an effective dispersant that blends with ATH and mica not only improving the dispensability properties but also enhancing the flame retardant properties. For example, the thermal decomposition temperature for a 5 % weight loss (Td 5%) reached 325 °C when the hybrid flame retardants were comprised of 10 g WPU and 100 g ATH/mica in a 15/85 ratio (10 WPU/15 ATH/85 mica). In comparison, with pure WPU, the thermal decomposition temperature for a 5 % weight loss (Td 5%) was only 255 °C. In addition, the fire retardant grade for flame retardant composites comprised of 10 WPU/15 ATH/85 mica (10/15/85 weight ratio) and wood panel reached level 2 in accordance with CNS 14705 (Chinese National Standard 14705).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Irvine D, McCluskey J, Robinson I (2000) Polym Degrad Stab 67:383–396

    Article  CAS  Google Scholar 

  2. Chuang CS, Tsai KC, Yang TH, Ko CH, Wang MK (2011) Appl Clay Sci 53:709–715

    Article  CAS  Google Scholar 

  3. Stevens GC (2000) Countervailing risks and benefits in the use of flame retardants, in flame retardants. Interscience Communications, London

    Google Scholar 

  4. Camino G, Costa L (1988) Polym Degrad Stab 20:271–294

    Article  CAS  Google Scholar 

  5. Laoutid F (2009) Mater Sci Eng R 63:100–125

    Article  Google Scholar 

  6. Pearce EM, Khanna YP, Reucher D (eds) (1981) Thermal characterization of polymeric materials. Academic Press, New York

    Google Scholar 

  7. Hilaldo CJ (ed) (1990) Flammability handbook for plastics. Technomic Publishing, Lancaster

    Google Scholar 

  8. Hastie JW (1973) J Res Natl Bur Stand 77a:733–754

    Article  Google Scholar 

  9. Bonsignore PV, Manhart JH (1974) In: Proceedings of the Annual Conference of Reinforced Plastic, Compos. Inst Soc Plast Ind 29:23c–23c

  10. Judeinstein P, Sanchez C (1996) J Mater Chem 6:511–525

  11. Daniel N, Fisher M, Tran L, Matisons JG (2002) J Am Chem Soc 124:13998–13999

    Article  Google Scholar 

  12. Al-Salah H (1988) J Polym Sci Part A: Polym Chem 26:1609–1620

    Article  CAS  Google Scholar 

  13. Egboh S (1983) J Macro Sci Chem 19:1041–1048

    Article  Google Scholar 

  14. Liu Y, Huang Y, Liu L (2007) Compos Sci Technol 67:2864–2876

    Article  CAS  Google Scholar 

  15. Lefebvre J, Bastin B, Bras ML, Duquesne S, Ritter C, Paleja R, Poutch F (2004) Polym Test 23:281–290

    Article  CAS  Google Scholar 

  16. Cross M, Cusack P, Hornsby P (2003) Polym Degrad Stab 79:309–318

    Article  CAS  Google Scholar 

  17. Matthieu B, Katharina L (2003) Macro 36:5119–5125

    Article  Google Scholar 

  18. Ho TJ, Moon KJ, Byung KK, Kwang HK (2007) Colloid surf a-physicochem. Eng Asp 302:559–567

    Article  Google Scholar 

  19. Aitziber L, Elise D-C, Elisabetta C, Costantino C, Joseph L, Keddie Jose MA (2011) Langmuir 27:3878–3888

    Article  Google Scholar 

  20. Faure B, Alvarez GS, Ahniyaz A, Villaluenga I, Berriozabal G, Miguel YD, Bergstrom L (2013) Sci Technol Adv Mater 14:02301–02323

    Article  Google Scholar 

  21. Vahabi H, Batistella MA, Otazaghine B, Longuet C, Ferry L, Sonnier R, Lopez-Cuesta JM (2012) Appl Clay Sci 70:58–66

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support for this research by the Ministry of Economic Affairs in Taiwan under the grant numbers 103-EC-17-A-08-S1-205 and Ministry of Science and Technology in Taiwan under the grant numbers 104-2221-E-002-159 and NSC 102-2221-E-037-001 -MY3, respectively. This study is also supported partially by Kaohsiung Medical University “Aim for the Top Universities Grant, grant No.: KMU-TP104B03”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chih-Kuang Wang or Kuo-Huang Hsieh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, WY., Pan, YW., Chuang, CN. et al. Fabrication and characterization of waterborne polyurethane (WPU) with aluminum trihydroxide (ATH) and mica as flame retardants. J Polym Res 22, 243 (2015). https://doi.org/10.1007/s10965-015-0888-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0888-y

Keywords

Navigation