Skip to main content
Log in

Effects of Maleic Anhydride Grafted Polypropylene on the Physical, Mechanical and Flammability Properties of Wood-flour/Polypropylene/Ammonium Polyphosphate Composites

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this study, maleic anhydride grafted polypropylene (MAPP) was incorporated as coupling agent in the wood-flour/polypropylene/ammonium polyphosphate composites (flame-retardant WPCs). The effects of MAPP content (5 wt.%, 10 wt.% and 15 wt.%) on the physical, mechanical and flammability properties of flame-retardant WPCs were investigated. The water soaking tests showed that the incorporation of MAPP could reduce the hygroscopicity of flame-retardant WPCs. The mechanical properties of WPCs were evaluated by three-point bending tests, unnotched Izod impact strength tests, and dynamic mechanical analysis. The results showed that the flame-retardant WPC containing 10 wt.% MAPP (WPC/APP/MAPP-10 %) performed the best flexural properties, the highest impact strength, E′ value, and tan δ at room temperature. The limiting oxygen index (LOI) tests and cone calorimetry tests showed that the incorporation of 10 wt.% MAPP endowed the flame-retardant WPC with the highest LOI value, the lowest peak-heat release rate, total heat release, CO/CO2 weight ratio and total smoke release. Moreover, the characterization of the WPCs combustion residues performed that WPC/APP/MAPP-10 % had the most complete carbonaceous structure with the highest graphitization degree after combustion. In general, the addition of 10 wt.% MAPP could impart the flame-retardant WPC with the optimum physical-mechanical properties and flame-retardant performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. H. Pham, H. D. Nguyen, J. Kim, and D. Hoang, Fiber. Polym., 20, 2383 (2019).

    Google Scholar 

  2. R. Z. Huang, C. T. Mei, X. W. Xu, T. Kärki, S. Y. Lee, and Q. L. Wu, Materials, 8, 8510 (2015).

    Google Scholar 

  3. P. Chindaprasirt, S. Hiziroglu, C. Waisurasingha, and P. Kasemsiri, Polym. Compos., 36, 604 (2015).

    Google Scholar 

  4. Y. Chen, N. M. Stark, M. A. Tshabalala, J. M. Gao, and Y. M. Fan, Materials, 9, 610 (2016).

    Google Scholar 

  5. Y. Peng, W. Wang, J. Z. Cao, and X. Guo, RSC Adv., 5, 41230 (2015).

    Google Scholar 

  6. S. Butylina, O. Martikka, and T. Kärki, Appl. Compos. Mater., 18, 10 (2011).

    Google Scholar 

  7. A. Ashori, Bioresource Technol., 99, 4661 (2008).

    Google Scholar 

  8. P. Mouritz and A. G. Gibson, Springer, The Netherlands, 2016.

  9. S. Chapple and R. Anandjiwala, J. Thermoplast. Compos., 23, 871 (2010).

    Google Scholar 

  10. M. Garcia, J. Hidalgo, I. Garmendia, and J. Garcia-Jaca, Compos. Part A, 40, 1772 (2009).

    Google Scholar 

  11. M. G. Salemane and A. S. Luyt, J. Appl. Polym. Sci., 100, 4173 (2006).

    Google Scholar 

  12. F. Shukor, A. Hassan, M. S. Islam, M. Mokhtar, and M. Hasan, Mater. Des., 54, 425 (2014).

    Google Scholar 

  13. Z. Li, A. R. Shah, M. N. Prabhakar, and J. I. Song, Fiber. Polym., 18, 555 (2017).

    Google Scholar 

  14. W. Wang, Y. Peng, Y. M. Dong, K. L. Wang, J. Z. Li, and W. Zhang, Polym. Compos., 39, 826 (2018).

    Google Scholar 

  15. W. Wang, Y. Peng, H. Chen, Q. Gao, J. Z. Li, and W. Zhang, Polym. Compos., 38, 2312 (2017).

    Google Scholar 

  16. J. X. Chen, Y. Wang, C. L. Hu, J. X. Liu, Y. F. Liu, M. Li, and Y. Lu, Materials, 6, 2483 (2013).

    Google Scholar 

  17. K. Murayama, S. Suzuki, Y. Kojima, H. Kobori, H. Ito, S. Ogoe, and M. Okamoto, J. Wood Chem. Technol., 38, 224 (2018).

    Google Scholar 

  18. J. H. Kim, J. S. Kim, J. H. Jang, M. S. Kim, Y. W. Chang, D. Y. Lim, and D. H. Kim, Fiber. Polym., 17, 671 (2016).

    Google Scholar 

  19. H. S. Kim, B. H. Lee, S. W. Choi, S. Kim, and H. J. Kim, Compos. Part A, 38, 1473 (2007).

    Google Scholar 

  20. J. A. Méndez, F. Vilaseca, M. A. Pèlach, J. P. López, L. Barberà, X. Turon, J. Gironès, and P. Mutjé, J. Appl. Polym. Sci., 105, 3588 (2007).

    Google Scholar 

  21. W. Wang, W. Zhang, H. Chen, S. F. Zhang, and J. Z. Li, Constr. Build. Mater., 79, 337 (2015).

    Google Scholar 

  22. Q. L. He, T. T. Yuan, S. Y. Wei, and Z. H. Guo, J. Mater. Chem. A, 1, 13064 (2013).

    Google Scholar 

  23. P. H. Nam, P. Maiti, M. Okamoto, T. Kotaka, N. Hasegawa, and A. Usuki, Polymer, 42, 9633 (2001).

    Google Scholar 

  24. W. Wang, Y. Peng, M. Zammarano, W. Zhang, and J. Z. Li, Polymers, 9, 615 (2017).

    Google Scholar 

  25. A. Ashori and S. Sheshmani, Bioresource Technol., 101, 4717 (2010).

    Google Scholar 

  26. W. Wang, W. Zhang, S. F. Zhang, and J. Z. Li, Constr. Build. Mater., 65, 151 (2014).

    Google Scholar 

  27. P. Mareri, S. Bastide, N. Binda, and A. Crespy, Compos. Sci. Technol., 58, 747 (1998).

    Google Scholar 

  28. F. C. Chang, J. F. Kadla, and F. Lam, Eur. J. Wood Wood Prod., 74, 23 (2016).

    Google Scholar 

  29. M. P. Sepe, “Plastic Design Library”, Norwich, NY, 1998.

  30. A. Arbelaiz, B. Fernández, J. A. Ramos, A. Retegi, R. Llano-Ponte, and I. Mondragon, Compos. Sci. Technol., 65, 1582 (2005).

    Google Scholar 

  31. G. Cantero, A. Arbelaiz, R. Llano-Ponte, and I. Mondragon, Compos. Sci. Technol., 63, 1247 (2003).

    Google Scholar 

  32. K. Van De Velde and P. Kiekens, J. Thermoplast. Compos. Mater., 14, 244 (2001).

    Google Scholar 

  33. A. R. Sanadi, D. F. Caulfield, R. E. Jacobson, and R. M. Rowell, Ind. Eng. Chem. Res., 34, 1889 (1995).

    Google Scholar 

  34. X. X. Zhou, Y. Yu, Q. J. Lin, and L. H. Chen, BioResources, 8, 6263 (2013).

    Google Scholar 

  35. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Review Lett., 97, 187401 (2006).

    Google Scholar 

  36. K. Wu, Z. Z. Wang, and Y. Hu, Polym. Adv. Technol., 19, 1118 (2008).

    Google Scholar 

  37. S. C. Lyu, B. C. Liu, C. J. Lee, H. K. Kang, C. W. Yang, and C. Y. Park, Chem. Mater., 15, 3951 (2003).

    Google Scholar 

  38. H. F. Pan, W. Wang, Y. Pan, L. Song, Y. Hu, and K. M. Liew, ACS Appl. Mater. Inter., 7, 101 (2015).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21703009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzhang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Chen, H. & Li, J. Effects of Maleic Anhydride Grafted Polypropylene on the Physical, Mechanical and Flammability Properties of Wood-flour/Polypropylene/Ammonium Polyphosphate Composites. Fibers Polym 22, 1137–1144 (2021). https://doi.org/10.1007/s12221-021-0202-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0202-z

Keywords

Navigation