Skip to main content
Log in

Preparation of biodegradable poly(butylene succinate)/halloysite nanotube nanocomposite foams using supercritical CO2 as blowing agent

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Biodegradable poly(butylene succinate) (PBS) was melt compounded with halloysite nanotube (HNT) to prepare PBS/HNT nanocomposites, and both pure PBS and PBS/HNT nanocomposites were foamed successfully using supercritical carbon dioxide as a physical blowing agent. The cell morphologiesshowed that the cell size decreased, and both cell density and volume expansion ratio increased with the addition of HNT. Within the HNT content used in this work (1, 3, 5, and 7 wt.%), the content of 5 wt.% was found to be the one that lead to the smallest cell size and highest cell density and volume expansion ratio. In addition to the HNT content, both saturation temperature and saturation pressure were found to significantly influence the cell morphology. Higher saturation pressure led to smaller cell size and higher volume expansion ratio. Interestingly, a close-celled to interconnect open-celled morphology transition occurred for PBS/HNT nanocomposites at a saturation temperature of 120 °C. The formation of interconnect open-celled morphology was mainly attributed to the stress induced by the HNT in the cell solidification process. With the increase of HNT content, saturation temperature and saturation pressure, the enthalpy of fusion of the foamed samples increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Gross RA, Kalra B (2002) Science 297:803–807

    Article  CAS  Google Scholar 

  2. Cooper AI (2003) Adv Mater 15:1049–1059

    Article  CAS  Google Scholar 

  3. Lee LJ, Zeng CC, Cao X, Han XM, Shen J, Xu GJ (2005) Compos Sci Technol 65:2344–2363

    Article  CAS  Google Scholar 

  4. Wang J, Zhu WL, Zhang HT, Park CB (2012) Chem Eng Sci 75:390–399

    Article  CAS  Google Scholar 

  5. Salerno A, Zeppetelli S, Di Maio E, Iannace S, Netti PA (2011) Macromol Rapid Commun 32:1150–1156

    Article  CAS  Google Scholar 

  6. Salerno A, Di Maio E, Iannace S, Netti PA (2011) J Supercrit Fluids 58:158–167

    Article  CAS  Google Scholar 

  7. Liao X, Nawaby AV (2012) J Polym Res 19:9827–9835

    Article  Google Scholar 

  8. Bao DF, Liao X, He T, Yang Q, Li GX (2013) J Polym Res 20:290–299

    Article  Google Scholar 

  9. Orava E, Korventausta J, Rosenberg M, Jokinen M, Rosling A (2007) Polym Degrad Stab 92:14–23

    Article  CAS  Google Scholar 

  10. Boccaccini AR, Blaker JJ, Maquet V, Day RM, Jerome R (2005) Mater Sci Eng C-Biomim 25:23–31

    Article  Google Scholar 

  11. Richards E, Rizvi R, Chow A, Naguib H (2008) J Polym Environ 16:258–266

    Article  CAS  Google Scholar 

  12. Fujimaki T (1998) Polym Degrad Stab 59:209–214

    Article  CAS  Google Scholar 

  13. Ihn KJ, Yoo ES, Im SS (1995) Macromolecules 28:2460–2464

    Article  CAS  Google Scholar 

  14. Sutthiphong S, Pavasant P, Supaphol P (2009) Polymer 50:1548–1558

    Article  CAS  Google Scholar 

  15. Li HY, Chang J, Cao AM, Wang JY (2005) Macromol Biosci 5:433–440

    Article  CAS  Google Scholar 

  16. da Silva MLA, Crawford A, Mundy JM, Correlo VM, Sol P, Bhattacharya M, Hatton PV, Reis RL, Neves NM (2010) Acta Biomater 6:1149–1157

    Article  Google Scholar 

  17. Coutinho DF, Gomes ME, Neves NM, Reis RL (2012) Acta Biomater 8:1490–1497

    Article  CAS  Google Scholar 

  18. Jaeger A, Gromadzki D, Jaeger E, Giacomelli FC, Kozlowska A, Kobera L, Brus J, Rihova B, El Fray M, Ulbrich K, Stepanek P (2012) Soft Matter 8:4343–4354

    Article  CAS  Google Scholar 

  19. Brunner CT, Baran ET, Pinho ED, Reis RL, Neves NM (2011) Colloid Surface B 84:498–507

    Article  CAS  Google Scholar 

  20. Xu L, Ren Z (2008) J Polym Eng 28:27–31

    Article  CAS  Google Scholar 

  21. Bahari L, Mitomo H, Enjoji T, Yoshii F, Makuuchi K (1998) Polym Degrad Stab 62:551–557

    Article  CAS  Google Scholar 

  22. Lim SK, Lee SI, Jang SG, Lee KH, Choi HJ, Chin IJ (2011) J Macromol Sci B 50:1171–1184

    Article  CAS  Google Scholar 

  23. Lim SK, Lee SI, Jang SG, Lee KH, Choi HJ, Chin IJ (2011) J Macromol Sci B 50:100–110

    Article  CAS  Google Scholar 

  24. Lim SK, Lee JJ, Jang SG, Lee SI, Lee KH, Choi HJ, Chin IJ (2011) Polym Eng Sci 51:1316–1324

    Article  CAS  Google Scholar 

  25. Li G, Qi RR, Lu JQ, Hu XL, Luo Y, Jiang PK (2013) J Appl Polym Sci 127:3586–3594

    Article  CAS  Google Scholar 

  26. Zhang YH, Lu B, Lv FZ, Guo WM, Ji JH, Chu PK, Zhang CG (2012) J Appl Polym Sci 126:756–761

    Article  CAS  Google Scholar 

  27. Xu Q, Peng Q, Ni W, Hou ZZ, Li JG, Yu L (2006) J Appl Polym Sci 100:2901–2906

    Article  CAS  Google Scholar 

  28. Son JM, Song KB, Kang BW, Lee KH (2012) Polym (Korea) 36:34–40

    Article  CAS  Google Scholar 

  29. Lee YH, Wang KH, Park CB, Sain M (2007) J Appl Polym Sci 103:2129–2134

    Article  CAS  Google Scholar 

  30. Wu W, Cao XW, Zhang YJ, He GJ (2013) J Appl Polym Sci 130:443–452

    Article  CAS  Google Scholar 

  31. Joussein E, Petit S, Churchman J, Theng B, Righi D, Delvaux B (2005) Clay Miner 40:383–426

    Article  CAS  Google Scholar 

  32. Du ML, Guo BC, Jia DM (2010) Polym Int 59:574–582

    CAS  Google Scholar 

  33. Lecouvet B, Gutierrez JG, Sclavons M, Bailly C (2011) Polym Degrad Stab 96:226–235

    Article  CAS  Google Scholar 

  34. Sharif NFA, Mohamad Z, Hassan A, Wahit MU (2012) J Polym Res 19:9749–9758

    Article  Google Scholar 

  35. Marney DCO, Yang W, Russell LJ, Shen SZ, Nguyen T, Yuan Q, Varley R, Li S (2012) Polym Adv Technol 23:1564–1571

    Article  CAS  Google Scholar 

  36. Marney DCO, Russell LJ, Wu DY, Nguyen T, Cramm D, Rigopoulos N, Wright N, Greaves M (2008) Polym Degrad Stab 93:1971–1978

    Article  CAS  Google Scholar 

  37. Ye YP, Chen HB, Wu JS, Chan CM (2011) Compos Sci Technol 71:717–723

    Article  CAS  Google Scholar 

  38. Jia ZX, Luo YF, Guo BC, Yang BT, Du ML, Jia DM (2009) Polym-Plast Technol 48:607–613

    Article  CAS  Google Scholar 

  39. Wu W, Cao XW, Luo J, He GJ, Zhang YJ (2014) Polym Compos 35:847–855

    Article  CAS  Google Scholar 

  40. Geol SK, Beckman EJ (1994) Polym Eng Sci 34:1137–1147

    Article  Google Scholar 

  41. Corre YM, Maazouz A, Duchet J, Reignier J (2011) J Supercrit Fluids 58:177–188

    Article  CAS  Google Scholar 

  42. Marini J, Suman Bretas RE (2013) Polym Eng Sci 53:1512–1528

    Article  CAS  Google Scholar 

  43. Mishra JK, Hwang KJ, Ha CS (2005) Polymer 46:1995–2002

    Article  CAS  Google Scholar 

  44. Lee KS, Chang YW (2013) J Appl Polym Sci 128:2807–2816

    Article  CAS  Google Scholar 

  45. Tang XG, Hou M, Zou J, Truss R (2013) J Appl Polym Sci 128:869–878

    Article  CAS  Google Scholar 

  46. Nam JY, Ray SS, Okamoto M (2003) Macromolecules 36:7126–7131

    Article  CAS  Google Scholar 

  47. Colton JS, Suh NP (1987) Polym Eng Sci 27:485–492

    Article  CAS  Google Scholar 

  48. Colton JS, Suh NP (1987) Polym Eng Sci 27:493–499

    Article  CAS  Google Scholar 

  49. Huang HX, Wang JK (2007) J Appl Polym Sci 106:505–513

    Article  CAS  Google Scholar 

  50. Tsuchiya A, Tateyama H, Kikuchi T, Takahashi T, Koyama K (2007) Polym J 39:514–523

    Article  CAS  Google Scholar 

  51. Yang JT, Huang LQ, Li LL, Zhang YF, Chen F, Zhong MQ (2013) J Polym Res 20:173–180

    Article  Google Scholar 

  52. Vogel H (1921) Phys Z 23:645–646

    Google Scholar 

  53. Fulcher GS (1925) J Am Ceram Soc 8:339–355

    Article  CAS  Google Scholar 

  54. Tammann G, Hesse W (1926) Anorg Allg Chem 156:245–257

    Article  Google Scholar 

  55. Reverchon E, Cardea S (2007) J Supercrit Fluids 40:144–152

    Article  CAS  Google Scholar 

  56. Lee ST, Park CB, Ramesh NS (2006) CRC Press 64–72

  57. Kiran E, Liu K, Ramsdell K (2008) Polymer 49:1853–1859

    Article  CAS  Google Scholar 

  58. Markocic E, Skerget M, Knez Z (2013) Ind Eng Chem Res 52:15594–15601

    Article  CAS  Google Scholar 

  59. Zhang P, Zhou NQ, Li B (2007) Polym-Plast Technol 46:885–891

    Article  CAS  Google Scholar 

  60. Liao X, Nawaby AV, Naguib HE (2012) J Appl Polym Sci 124:585–594

    Article  CAS  Google Scholar 

  61. Nofar M, Zhu W, Park CB (2012) Polymer 53:3341–3353

    Article  CAS  Google Scholar 

  62. Li DC, Liu T, Zhao L, Yuan WK (2011) J Supercrit Fluids 60:89–97

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianwu Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Cao, X., Lin, H. et al. Preparation of biodegradable poly(butylene succinate)/halloysite nanotube nanocomposite foams using supercritical CO2 as blowing agent. J Polym Res 22, 177 (2015). https://doi.org/10.1007/s10965-015-0811-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0811-6

Keywords

Navigation