Skip to main content

Advertisement

Log in

Preparation of polystyrene/graphene oxide composites and their supercritical carbon dioxide foaming

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

We investigated the nucleation effect of well exfoliated and dispersed graphene oxide(GO) sheets on polystyrene(PS) supercritical carbon dioxide foaming. To get PS/GO composites with well exfoliated GO sheets, a method based on latex concept was employed. The characterizations based on X-ray diffraction and transmission electron microscope demonstrated the full exfoliation and uniform dispersion of GO sheets in polymer matrix. Thermal stability and dynamic mechanical properties of the compound materials were investigated by a series of measurements such as differential scanning calorimetry analysis, dynamic mechanical analysis and thermogravimetry analysis, which suggested the higher thermal stability and glass transition temperature of the composites. The supercritical carbon dioxide foaming of pure PS and composites was carried out in a batch foaming system, the results showed that the well exfoliated GO sheets could be a high efficient nucleation agent. For the pure PS foam and PS/GO composite foams produced under the foaming condition of 120 °C and 13.8 MPa, the average foam cell size was reduced from 7.1 um to 4.3 um and the cell density was increased from 4.52 × 109 to 1.84 × 1010 cells/cm3 by around 5.0 wt.% GO sheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lee LJ, Zeng CC, Cao X, Han XM, Shen J, Xu GJ (2005) Compos Sci Technol 15:2344–2363

    Article  Google Scholar 

  2. Zeng CC, Zhang C, Wang B, Hossieny N (2010) Polymer 3:655–664

    Article  Google Scholar 

  3. Suh NP (2003) Macromol Symp 1:187–202

    Article  Google Scholar 

  4. Martini J, Waldman FA, Suh NP (1982) SPE ANTEC Tech Papers 28:674–676

    Google Scholar 

  5. Matuana LM, Park CB, Balatinecz JJ (1998) Cell Polym 1:1–16

    Google Scholar 

  6. Kumar V, Seeler KA, Reinf J (1993) Plast Compos 3:359–376

    Google Scholar 

  7. Kumar V, Weller JE, Juntunen RP, Bezubic WP (2000) J Vinyl Addit Techn 2:93–99

    Google Scholar 

  8. Park CB, Baldwin DF, Suh NP (1995) Polym Eng Sci 5:432–440

    Article  Google Scholar 

  9. Han XM, Koelling KW, Tomasko DL, Lee LJ (2002) Polym Eng Sci 11:2094–2106

    Article  Google Scholar 

  10. Liao X, Nawaby AV (2012) J Polym Res 19:9827

    Article  Google Scholar 

  11. Shen J, Zeng CC, Lee LJ (2005) Polymer 14:5218–5224

    Article  Google Scholar 

  12. Zhai WT, Yu J, Wu LC, Ma WM, He JS (2006) Polymer 21:7580–7589

    Article  Google Scholar 

  13. Han XM, Koelling KW, Lee LJ, Tomasko DL (2003) Polym Eng Sci 6:1206–1220

    Article  Google Scholar 

  14. Leung SN, Wong A, Park CB, Zong JH (2008) J Appl Polym Sci 6:3997–4003

    Article  Google Scholar 

  15. Guo ZH, Yang JT, Wingert MJ, Tomasko DL, Lee LJ, Daniel T (2008) J Cell Plast 6:453–468

    Article  Google Scholar 

  16. Yang JT, Wu MJ, Chen F, Zhong MQ (2011) J Supercrit Fluids 2:201–207

    Article  Google Scholar 

  17. Yang JT, Chen F, Zhang F, Fei ZD, Zhong MQ (2010) J Polym Sci: Part B Polym Phys 6:733–738

    Article  Google Scholar 

  18. Yang JT, Chen F, Ye YC, Fei ZD, Zhong MQ (2010) Colloid Polym Sci 288:761–767

    Article  CAS  Google Scholar 

  19. Peng Z, Feng CF, Luo YY, Li YZ, Kong LX (2010) Carbon 48:4497–4503

    Article  CAS  Google Scholar 

  20. Tkalya E, Ghislandi M, Alekseev A, Koning C, Loos J (2010) J Mater Chem 20:3035–3039

    Article  CAS  Google Scholar 

  21. Zhang CL, Zhu B, Lee LJ (2010) Polymer 52:1847–1855

    Article  Google Scholar 

  22. Smith GD, Ayyagari C, Bedrov D (2000) Macromolecular 16:6194–6199

    Google Scholar 

  23. Hammel R, Mackinght WJ, Karasz FE (1975) J Appl Phys 10:4199–4203

    Article  Google Scholar 

  24. Colyon JS, Suh NP (1987) Polym Eng Sci 7:485–492

    Google Scholar 

  25. Colyon JS, Suh NP (1987) Polym Eng Sci 7:493–499

    Google Scholar 

  26. Colyon JS, Suh NP (1987) Polym Eng Sci 7:500–503

    Google Scholar 

  27. Guo QP, Wang J, Park CB, Ohshima M (2006) Ind Eng Chem Res 18:6153–6161

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (Grant No. 50903070, 51273178 and 21274131), the Natural Science Foundation of Zhejiang Province (LY12E03004), Science and Technology Innovative Research Team of Zhejiang Province(No. 2009R50010)and Qianjiang talent project of Zhejiang Province of China (2010R10018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jintao Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Huang, L., Li, L. et al. Preparation of polystyrene/graphene oxide composites and their supercritical carbon dioxide foaming. J Polym Res 20, 173 (2013). https://doi.org/10.1007/s10965-013-0173-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0173-x

Keywords

Navigation