Skip to main content
Log in

Influences of PP-g-MA on the surface free energy, morphologies and mechanical properties of thermoplastic polyurethane / polypropylene blends

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The effects of polypropylene-g-maleic anhydride (PP-g-MA) addition on the surface free energy (SFE), morphologies, and mechanical properties of thermoplastic polyurethane (TPU)/polypropylene (PP) blends were investigated in this study. Specifically, the SFEs of the unmodified and PP-g-MA-modified TPU/PP blends were studied through contact angle (CA) measurements; when PP-g-MA content was increased from 3 to 11 phr, the SFE of the blends decreased with different TPU/PP blending ratios while the corresponding CA increased. This decrease was attributed to the interaction between PP-g-MA and TPU. Wide-angle X-ray (WAXD) diffraction results indicated that the crystalline morphology of the blends was not significantly influenced by PP-g-MA. This morphology was observed through scanning electron microscopy (SEM), and the results showed that the TPU/PP blends exhibited an incompatible microstructure that improved with the addition of PP-g-MA. The partial disperse size curve indicated the changes in partial disperse phase size as observed through SEM. Moreover, the fine and mean partial dispersion of the TPU/PP blend was initiated by increasing PP-g-MA content. Specifically, the mechanical properties of the TPU/PP blend were optimized with the addition of 7 phr PP-g-MA. The thermogravimetric (TG) curves suggested that the addition of PP-g-MA could enhance the miscibility of TPU/PP blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Jia SK, Qu JP, Liu WF, Wu CR, Chen RY, Zhai SF, Huang Z (2014) Polym Eng Sci 54:716–724

    Article  CAS  Google Scholar 

  2. Domininghaus H (1988) Plastics for Engineers, Materials, Properties, Applications; Hanser, Munich

  3. Walker BM, Rader CP (1988) Handbook of Thermoplastic Elastomers. Van Nostrand Reinhold, New York

    Book  Google Scholar 

  4. Kannan M, Bhagawan SS, Joseph K, Thomas S (2008) e-Polymers 133:1–13

    Google Scholar 

  5. Yamasaki S, Nishiguchi D, Kojio K, Furukawa M (2007) J Polym Sci Pol Phys 45:800–814

    Article  CAS  Google Scholar 

  6. Xu Y, Chen M, Ning X, Chen XL (2014) J Therm Anal Calorim 115:689–695

    Article  CAS  Google Scholar 

  7. Barick AK, Tripathy DK (2010) J Appl Polym Sci 117:639–654

    Article  CAS  Google Scholar 

  8. Saiani A, Daunch WA, Verbeke H, Leenslag JW, Higgins JS (2001) Macromolecules 34:9059–9068

    Article  CAS  Google Scholar 

  9. Pattanayak A, Jana SC (2005) Polymer 46:5183–5193

    Article  CAS  Google Scholar 

  10. Finnigan B, Martin D, Halley P, Truss R, Campbell K (2004) Polymer 45:2249–2260

    Article  CAS  Google Scholar 

  11. Potschke P, Wallheinke K, Fritsche H, Stutz H (1997) J Appl Polym Sci 64:749–762

    Article  Google Scholar 

  12. Maji PK, Das NK, Bhowmick AK (2010) Polymer 51:1100–1110

    Article  CAS  Google Scholar 

  13. Mishra AK, Chattopadhyay S, Rajamohanan PR, Nando GB (2011) Polymer 52:1071–1083

    Article  CAS  Google Scholar 

  14. Aurilia M, Piscitelli F, Sorrentino L, Lavorgna M, Iannace S (2011) Eur Polym J 47:925–936

    Article  CAS  Google Scholar 

  15. Stachewicz U, Li S, Bilotti E, Barber AH (2012) Appli Phys Lett 100:1–3

    Article  Google Scholar 

  16. Liu JF, Xiao XY, Shi YL, Wan CX (2014) Appl Surf Sci 297:33–39

    Article  CAS  Google Scholar 

  17. Li Y, Chen Q, Li M, Zhou XG (2013) Appl Surf Sci 274:248–254

    Article  CAS  Google Scholar 

  18. Rajan KP, Al-Ghamdi A, Ramesh P, Nando NB (2012) J Polym Res 19:1–13

    Article  CAS  Google Scholar 

  19. Kannan M, Bhagawan SS, Thomas S, Joseph K (2013) J Polym Res 20:1–15

    Article  CAS  Google Scholar 

  20. Zou H, Ran QP, Wu SS, Shen J (2008) Polym Composite 29:385–389

    Article  CAS  Google Scholar 

  21. Huang FL, Wei QF, Wang XQ, Xu WZ (2006) Polym Test 25:22–27

    Article  Google Scholar 

  22. Chen BQ, Sun K (2005) Polym Test 24:64–70

    Article  CAS  Google Scholar 

  23. Nachtigall SMB, Cerveira GS, Rosa SML (2007) Polym Test 26:619–628

    Article  CAS  Google Scholar 

  24. Potschke P, Pionteck J, Stutz H (2002) Polymer 43:6965–6972

    Article  CAS  Google Scholar 

  25. Wallheinke K, Potschke P, Stutz H (1997) J Appl Polym Sci 65:2217–2226

    Article  CAS  Google Scholar 

  26. Kannan M, Bhagawan SS (2009) Polym Plast Technol 48:871–876

    Article  CAS  Google Scholar 

  27. Emi GB, Ivan S, Mirela L (2007) J Appl Polym Sci 104:3980–3985

    Article  Google Scholar 

  28. Emi GB, Andela P, Ivan S, Mirela L (2010) J Appl Polym Sci 117:1378–1384

    Google Scholar 

  29. Potschke P, Wallheinke K, Fritsche H (1997) J Appl Polym Sci 64:749–762

    Article  Google Scholar 

  30. Chuayjuljit S, Ketthongmongkol S (2013) J Thermoplast Compos 26:923–935

    Article  CAS  Google Scholar 

  31. Stachewicz U, Barber AH (2011) Langmuir 27:3024–3029

    Article  CAS  Google Scholar 

  32. Owens DK, Wendt RC (1969) J Appl Polym Sci 13:1741–1747

    Article  CAS  Google Scholar 

  33. Kowalonek J, Kaczmarek H, Dabrowska A (2010) Appl Surf Sci 257:325–331

    Article  CAS  Google Scholar 

  34. Barber AH, Cohen SR, Wagner HD (2004) Phys Rev Lett 92:186103

    Article  Google Scholar 

  35. Barber AH, Cohen SR, Wagner HD (2005) Phys Rev B 71:115443

    Article  Google Scholar 

  36. Pattanayak A, Jana SC (2005) Polymer 46:3394–3406

    Article  CAS  Google Scholar 

  37. Pattanayak A, Jana SC (2005) Polymer 46:5183–5193

    Article  CAS  Google Scholar 

  38. Jia SK, Qu JP, Wu CR, Liu WF, Chen RY, Zhai SF, Huang Z, Chen FQ (2013) Langmuir 29:13509–13517

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the Specialized Research Fund for the Doctoral Program of Higher Education (SLGKYQD2-23), the Shaanxi province department of education project (2013JK0879) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shikui Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, S., Zhu, Y., Wang, Z. et al. Influences of PP-g-MA on the surface free energy, morphologies and mechanical properties of thermoplastic polyurethane / polypropylene blends. J Polym Res 22, 159 (2015). https://doi.org/10.1007/s10965-015-0800-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0800-9

Keywords

Navigation