Skip to main content
Log in

Functionalized multi-wall carbon nanotube reinforced poly(ester-imide) bionanocomposites containing L-leucine amino acid units

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This study aims at characterizing the thermal and morphological properties of multi-walled carbon nanotubes (MWCNT)s reinforced poly(ester-imide) (PEI) bionanocomposites (BNC)s containing amino acid group which were prepared through ultrasonication technique. To enhance the interfacial interaction between MWCNTs and PEI, carboxylic functionalized MWCNTs were embedded with PEI chains. By applying a step-growth polymerization method, biodegradable and chiral PEI was synthesized from a reaction of natural amino acid based diacid (4) with 4,4′-thiobis(2-tert-butyl-5-methylphenol) (5) promoted by tosyl chloride in pyridine and N,N-dimethyl formamide solution. The prepared BNCs were studied with Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The microstructure study of the BNCs containing 5, 10, and 15 wt.% MWCNT–COOH exhibited rather homogeneous dispersion of MWCNTs throughout PEI matrices on the macroscopic scale. In comparison with neat PEI, the MWCNTs reinforced BNCs revealed higher thermal stability as confirmed by TGA results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Harris PJF (2004) Carbon nanotube composites. Int Mater Rev 49:31–43

    Article  CAS  Google Scholar 

  2. Scheibe B, Borowiak-Palen E, Kalenczuk RJ (2010) Oxidation and reduction of multiwalled carbon nanotubes—preparation and characterization. Mater Charact 61:185–191

    Article  CAS  Google Scholar 

  3. Ma PC, Siddiqui NA, Marom G, Kim JK (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos Part A 41:1345–1367

    Article  Google Scholar 

  4. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136

    Article  CAS  Google Scholar 

  5. Koval’chuk AA, Shevchenko VG, Shchegolikhin AN, Nedorezova PM, Klyamkina AN, Aladyshev AM (2008) Effect of carbon nanotube functionalization on the structural and mechanical properties of polypropylene/MWCNT composites. Macromolecules 41:7536–7542

    Article  Google Scholar 

  6. Yesil S, Bayram G (2011) Effect of carbon nanotube purification on the electrical and mechanical properties of poly(ethylene terephthalate) composites with carbon nanotubes in low concentration. J Appl Polym Sci 119:3360–3371

    Article  CAS  Google Scholar 

  7. Gupta A, Choudhary V (2011) Electrical conductivity and shielding effectiveness of poly(trimethylene terephthalate)/multiwalled carbon nanotube composites. J Mater Sci 46:6416–6423

    Article  CAS  Google Scholar 

  8. Mallakpour S, Zadehnazari A (2013) Synthesize procedures, mechanical and thermal properties of thiazole bearing poly(amid-imide) composite thin films containing multiwalled carbon nanotubes. Colloid Polym Sci 291:1525–1534

    Article  CAS  Google Scholar 

  9. Mallakpour S, Zadehnazari A (2013) The production of functionalized multiwall carbon nanotube/amino acid-based poly(amide–imide) composites containing a pendant dopamine moiety. Carbon 56:27–37

    Article  CAS  Google Scholar 

  10. Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194–5205

    Article  CAS  Google Scholar 

  11. Tasis D, Tagmatarchis N, Georgakilas V, Prato M (2003) Soluble carbon nanotubes. Chem Eur J 9:4000–4008

    Article  CAS  Google Scholar 

  12. Demoustier S, Minoux E, Baillif ML, Charles M, Ziaei A (2008) Review of two microwave applications of carbon nanotubes: nano-antennas and nano-switches. C R Physique 9:53–66

    Article  CAS  Google Scholar 

  13. Mallakpour S, Zadehnazari A (2012) Chiral poly(Amide-Imide)/carbon nanotube bionanocomposites containing hydroxyl pendant groups and L-phenylalanine amino acid: synthesis, preparation of thin films, and thermomechanical behavior. Soft Matter 11:494–502

    Google Scholar 

  14. Lee SH, Choi SH, Kim SY, Young JR (2010) Effects of thermal imidization on mechanical properties of poly(amidecoimide)/multiwalled carbon nanotube composite films. J Appl Polym Sci 117:3170–3180

    Article  CAS  Google Scholar 

  15. Park C, Ounaies Z, Watson KA, Crooks RE, Smith J Jr, Lowther SE et al (2002) Dispersion of single wall carbon nanotubes by in situ polymerization under sonication. Chem Phys Lett 364:303–308

    Article  CAS  Google Scholar 

  16. Mallakpour S, Zadehnazari A (2013) Effect of amino acid-functionalization on the interfacial adhesion and behavior of multi-walled carbon nanotubes/poly (amide-imide) nanocomposites containing thiazole side unit. J Polym Res 20:192–203

    Article  Google Scholar 

  17. Xia H, Wang Q (2002) Ultrasonic irradiation: a novel approach to prepare conductive polyaniline/nanocrystalline titanium oxide composites. Chem Mater 14:2158–2165

    Article  CAS  Google Scholar 

  18. Bhowmik PK, Han H, Cebe JJ, Burchett RA (2002) Thermotropic liquid-crystalline polyesters of 4, 4-biphenol and phenylsubstituted 4, 4-biphenols with 4, 4- oxybisbenzoic acid. J Polym Sci A Polym Chem 40:141–155

    Article  CAS  Google Scholar 

  19. Yerlikaya Z, Aksoy S, Bayramli E (2001) Synthesis and characterization of fully aromatic thermotropic liquid-crystalline copolyesters containing m-hydroxybenzoic acid units. J Polym Sci Part A Polym Chem 39:3263–3277

    Article  CAS  Google Scholar 

  20. Mallakpour S, Soltanian S (2012) Synthesis and structural characterization of novel chiral nanostructured poly(esterimide)s containing different natural amino acids and 4,4′-Thiobis(2-tert-butyl-5-methylphenol) Linkages. J Appl Polym Sci 124:5089–5096

    Article  CAS  Google Scholar 

  21. Mallakpour S, Zadehnazari A (2011) Advances in synthetic optically active condensation polymers—a review. Express Polym Lett 5:142–181

    Article  CAS  Google Scholar 

  22. Petrov VM, Gagulin VV (2001) Microwave absorbing materials. Inorg Mater 37:135–141

    Article  Google Scholar 

  23. Mallakpour S, Soltanian S (2012) Synthesis and properties of optically active nanostructured polymers bearing amino acid moieties by direct polycondensation of 4,4′-thiobis(2-tert-butyl-5-methylphenol) with chiral diacids. Amino Acids 42:2187–2194

    Article  CAS  Google Scholar 

  24. Mallakpour S, Mirkarimi F (2010) Step-growth polymerization of 5-[(9,10-dihydro-9,10-ethanoanthracene-11,12-dicarboximido)-3-methylbutanoylamino] isophthalic acid with aromatic diols. J Appl Polym Sci 117:3239–3246

    CAS  Google Scholar 

  25. Mallakpour S, Barati A (2012) Preparation and characterization of optically active poly (amide-imide)/TiO2 bionanocomposites containing N-trimellitylimido-L-isoleucine linkages: using ionic liquid and ultrasonic irradiation. J Polym Res 19:9802–9809

    Article  Google Scholar 

  26. Mallakpour S, Dehghani M, Sabzalian MR (2013) Green step-grow polymerization of biodegradable amino acid based diacids with 3,5-diamino-N-(thiazole-2-yl)benzamide: characterization and study on bioactivity. J Polym Res 20:85–90

    Article  Google Scholar 

  27. Mallakpour S, Shahmohammadi MH (2004) Synthesis and characterization of novel optically active poly(imide–urethane)s derived from N, N-(pyromellitoyl)-bis-(L-leucine) diisocyanate and aromatic diols. Polym Int 53:184–190

    Article  CAS  Google Scholar 

  28. Mallakpour S, Soltanian S, Sabzalian MR (2011) Fabrication and in vitro degradation study of novel optically active polymers derived from amino acid containing diacids and 4,4′-thiobis(2-tert-butyl-5-methylphenol). J Polym Res 18:1679–1686

    Article  CAS  Google Scholar 

  29. Golosova AA, Adelsberger J, Sepe A, Niedermeier MA et al (2012) Dispersions of polymer-modified carbon nanotubes: a small-angle scattering investigation. J Phys Chem C 116:15765–15774

    Article  CAS  Google Scholar 

  30. Van Krevelen DW, Hoftyzer PJ (1976) Properties of polymers, 3rd edn. Elsevier, Scientific Publishing, Amsterdam

    Google Scholar 

Download references

Acknowledgments

We wish to express our gratitude to the Research Affairs Division Isfahan University of Technology (IUT), Isfahan, for partial financial support. Further financial support from National Elite Foundation (NEF), Iran Nanotechnology Initiative Council (INIC) and Center of Excellency in Sensors and Green Chemistry Research (IUT) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadpour Mallakpour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallakpour, S., Soltanian, S. Functionalized multi-wall carbon nanotube reinforced poly(ester-imide) bionanocomposites containing L-leucine amino acid units. J Polym Res 21, 335 (2014). https://doi.org/10.1007/s10965-013-0335-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0335-x

Keywords

Navigation