Skip to main content
Log in

Synthesize procedures, mechanical and thermal properties of thiazole bearing poly(amid-imide) composite thin films containing multiwalled carbon nanotubes

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

This research is aimed at characterizing the thermal, mechanical, and morphological properties of carbon nanotubes (CNTs) reinforced poly(amide-imide) (PAI) composites having thiazol and amino acid groups which were prepared by sonication-assisted solution compounding. To increase the compatibility between the PAI matrix and CNTs, carboxyl-functionalized multiwall CNTs (MWCNTs-COOH) were used in this study. The MWCNTs were dispersed homogeneously in the PAI matrix while the structure of the polymer and the MWCNTs structure are stable in the preparation process as revealed by transmission electron microscopy. MWCNT/PAI composite films have been prepared by casting a solution of precursor polymer containing MWCNTs into a thin film, and its tensile properties were examined. The thermal stability, Young’s modulus, and tensile strength of PAI were greatly improved by the incorporation of MWCNTs and their good dispersion. Composites were also characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and thermal gravimetric analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Harris PJF (1999) Nanotubes and related structures—new materials for the twenty-first century. University of Cambridge Press

  2. Baughman RH, Zakhidov AA, De Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297:787–792

    Article  CAS  Google Scholar 

  3. Alimohammadi F, Parvinzadeh Gashti M, Shamei A (2012) Functional cellulose fibers via polycarboxylic acid/carbon nanotube composite coating. J Coat Technol Res. doi:10.1007/s11998-012-9429-3

  4. Du Y, Shen SZ, Yang WD, Chen S, Qin Z, Cai KF, Casey PS (2012) Facile preparation and characterization of poly(3-hexylthiophene)/multiwalled carbon nanotube thermoelectric composite films. J Electron Mater 41:1436–1441

    Article  CAS  Google Scholar 

  5. Diez-Pascual AM, Naffakh M, Marco C, Ellis G (2012) Mechanical and electrical properties of carbon nanotube/poly(phenylene sulphide) composites incorporating polyetherimide and inorganic fullerene-like nanoparticles. Composites Part A 43:603–612

    Article  CAS  Google Scholar 

  6. Kim SW, Kim T, Kim YS, Choi HS, Lim HJ, Yang SJ, Park CR (2012) Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon 50:3–33

    Article  CAS  Google Scholar 

  7. Bechinger C, Rudhardt D, Leiderer P, Roth R, Dietrich S (1999) Understanding depletion forces beyond entropy. Phys Rev Lett 83:3960–3963

    Article  CAS  Google Scholar 

  8. Frank S, Poncharal P, Wang ZL, de Heer WA (1998) Carbon nanotube quantum resistors. Science 280:1744–1746

    Article  CAS  Google Scholar 

  9. Karabanova LV, Whitby RLD, Bershtein VA, Korobeinyk AV, Yakushev PN, Bondaruk OM, Lloyd AW, Mikhalovsky SV (2012) The role of interfacial chemistry and interactions in the dynamics of thermosetting polyurethane–multiwalled carbon nanotube composites at low filler contents. Colloid Polym Sci. doi:10.1007/s00396-012-2745-4

  10. Liu T, Xu G, Zhang J, Zhang H, Pang J (2012) Dispersion of carbon nanotubes by the branched block copolymer Tetronic 1107 in an alcohol–water solution. Colloid Polym Sci. doi:10.1007/s00396-012-2745-4

  11. Hill D, Lin Y, Qu L, Kitaygorodskiy A, Connell JW, Allard LF, Sun YP (2005) Functionalization of carbon nanotubes with derivatized polyimide. Macromolecules 38:7670–7675

    Article  CAS  Google Scholar 

  12. Chen GX, Kim HS, Park BH, Yoon JS (2005) Controlled functionalization of multiwalled carbon nanotubes with various molecular-weight poly(l-lactic acid). J Phys Chem B 109:22237–22243

    Article  CAS  Google Scholar 

  13. Diez-Pascual AM, Naffakh M, Gomez MA, Marco C, Ellis G, Gonzalez-Dominguez JM, Anson A, Martinez MT, Martinez-Rubi Y, Simard B, Ashrafi B (2009) The influence of a compatibilizer on the thermal and dynamic mechanical properties of PEEK/carbon nanotube composites. Nanotechnology 20:315707

    Article  CAS  Google Scholar 

  14. Hu CY, Xu YJ, Duo SW, Zhang RF, Li MS (2009) Non-covalent functionalization of carbon nanotubes with surfactants and polymers. J Chin Chem Soc 56:234–239

    CAS  Google Scholar 

  15. Liu L, Zheng Z, Gu C, Wang X (2010) The poly(urethane-ionic liquid)/multi-walled carbon nanotubes composites. Compos Sci Technol 70:1697–1703

    Article  CAS  Google Scholar 

  16. Zhao JC, Du FP, Zhou XP, Cui W, Wang XM, Zhu H, Xie XL, Mai YM (2011) Thermal conductive and electrical properties of polyurethane/hyperbranched poly(urea-urethane)-grafted multi-walled carbon nanotube composites. Composites Part B 42:2111–2116

    Article  Google Scholar 

  17. Xu J, Yao P, Jiang Z, Liu H, Li X, Liu L, Li M, Zheng Y (2012) Preparation, morphology, and properties of conducting polyaniline-grafted multiwalled carbon nanotubes/epoxy composites. J Appl Polym Sci 125:E334–E341

    Article  CAS  Google Scholar 

  18. Jeon IY, Tan LS, Baek JB (2008) Nanocomposites derived from in situ grafting of linear and hyperbranched poly(ether-ketone)s containing flexible oxyethylene spacers onto the surface of multiwalled carbon nanotubes. J Polym Sci Polym Chem 46:3471–3481

    Article  CAS  Google Scholar 

  19. Diez-Pascual AM, Martinez G, Martinez MT, Gomez MA (2010) Novel nanocomposites reinforced with hydroxylated poly(ether ether ketone)-grafted carbon nanotubes. J Mater Chem 20:8247–8256

    Article  CAS  Google Scholar 

  20. Cao L, Yang W, Yang J, Wang C, Fu S (2004) Hyperbranched poly(amidoamine)-modified multi-walled carbon nanotubes via grafting-from method. Chem Lett 33:490–491

    Article  CAS  Google Scholar 

  21. Sun G, Chen G, Liu J, Yang J, Xie J, Liu Z, Li R, Li X (2009) A facile gemini surfactant-improved dispersion of carbon nanotubes in polystyrene. Polymer 50:5787–5793

    Article  CAS  Google Scholar 

  22. Kim YS, Lee KH, Jung JC (1996) In: Mittal KL (ed) Polyimides and other high temperature polymers. Dekker, New York, pp 71–90

    Google Scholar 

  23. Koo M, Bae JS, Shim SE, Kim D, Nam DG, Lee JW, Lee GW, Yeum JH, Oh W (2010) Thermo-dependent characteristics of polyimide–graphene composites. Colloid Polym Sci. doi:10.1007/s00396-011-2469-x

  24. Mallakpour S, Rafiee Z (2011) New developments in polymer science and technology using combination of ionic liquids and microwave irradiation. Prog Polym Sci 36:1754–1765

    Article  CAS  Google Scholar 

  25. Yang CP, Su YY, Hsu MY (2006) Syntheses and properties of fluorinated polyamides and poly(amide imide)s based on 9,9-bis[4-(4-amino-2-trifluromethylphenoxy) phenyl]fluroene, aromatic dicarboxylic acids, and various monotrimellitimides and bistrimellitimides. Colloid Polym Sci 284:990–1000

    Article  CAS  Google Scholar 

  26. Lee SH, Choi SH, Choi JI, Lee JR, Youn JR (2010) Rheological property and curing behavior of poly(amide-co-imide)/multi-walled carbon nanotube composites. Korean J Chem Eng 27:658–665

    Article  CAS  Google Scholar 

  27. Lee SH, Choi SH, Kim SY, Young JR (2010) Effects of thermal imidization on mechanical properties of poly(amide-coimide)/multiwalled carbon nanotube composite films. J Appl Polym Sci 117:3170–3180

    Article  CAS  Google Scholar 

  28. Lee SH, Choi SH, Kim SY, Choi JI, Lee JR, Youn JR (2010) Degradation and dynamic properties of poly(amide-co-imide)/carbon nanotube composite films. Polym Polym Compos 18:381–390

    CAS  Google Scholar 

  29. Lauwiner M, Rys P, Wissmann J (1998) Reduction of aromatic nitro compounds with hydrazine hydrate in the presence of an iron oxide hydroxide catalyst. I. The reduction of monosubstituted nitrobenzenes with hydrazine hydrate in the presence of ferrihydrite. Appl Catal A 172:141–148

    Article  CAS  Google Scholar 

  30. Saeed S, Rashid N, Wong WT, Hussain R (2011) 3,5-Dinitro-N-(1,3-thiazol-2-yl)-benzamide monohydrate. Acta Cryst E67:o660. doi:10.1107/S1600536811005228

    Google Scholar 

  31. Mallakpour S, Ahmadizadegan H (2012) Poly(amide-imide)s obtained from 3,5-diamino-N-(thiazol-2-yl)-benzamide and dicarboxylic acids containing various amino acid units: Production, characterization and morphological investigation. High Perform Polym. doi:10.1177/0954008312459547

  32. Mallakpour S, Hajipour AR, Shahmohammadi MH (2002) Novel optically active poly(amide-imide)s from N-trimellitylimido-S-valine and aromatic diamines by direct polycondensation reaction. Iran Polym J 11:425–431

    CAS  Google Scholar 

  33. Mallakpour S, Dinari M (2012) In: Mohammad A, Inamuddin (eds) Green solvents I: properties and applications of ionic liquids. Springer, Netherlands, pp 1–32

    Google Scholar 

  34. Mallakpour S, Rafiee Z (2012) In: Mohammad A, Inamuddin (eds) Green solvents II: Properties and applications in chemistry. Springer, Netherlands, pp 1–66

    Chapter  Google Scholar 

  35. Lee HJ, Oh SJ, Choi JY, Kim JW, Han J, Tan LS, Baek JB (2005) In situ synthesis of poly(ethylene terephthalate) (PET) in ethylene glycol containing terephthalic acid and functionalized multiwalled carbon nanotubes (MWNTs) as an approach to MWNT/PET nanocomposites. Chem Mater 17:5057–5064

    Article  CAS  Google Scholar 

  36. Pérez-Cabero M, Rodríguez-Ramos I, Guerrero-Ruíz A (2003) Characterization of carbon nanotubes and carbon nanofibers prepared by catalytic decomposition of acetylene in a fluidized bed reactor. J Catal 215:305–316

    Article  Google Scholar 

  37. Van Krevelen DW (1975) Some basic aspects of flame resistance of polymeric materials. Polymer 16:615–620

    Article  Google Scholar 

  38. Johnson PR (1974) A general correlation of the flammability of natural and synthetic polymers. J Appl Polym Sci 18:491–504

    Article  CAS  Google Scholar 

  39. Siochi EJ, Working DC, Park C, Lillehei PT, Rouse JH, Topping CC, Bhattacharyya AR, Kumar S (2004) Melt processing of SWCNT-polyimide nanocomposite fibers. Composites Part B 35:439–446

    Article  Google Scholar 

  40. Ge JJ, Zhang D, Li Q, Hou HQ, Graham MJ, Dai L, Harris FW, Cheng SZD (2005) Multiwalled carbon nanotubes with chemically grafted polyetherimides. J Am Chem Soc 127:9984–9985

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study is financially supported by Research Affairs Division Isfahan University of Technology (IUT). Further, financial support from National Elite Foundation and Center of Excellency in Sensors and Green Chemistry Research (IUT) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadpour Mallakpour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallakpour, S., Zadehnazari, A. Synthesize procedures, mechanical and thermal properties of thiazole bearing poly(amid-imide) composite thin films containing multiwalled carbon nanotubes. Colloid Polym Sci 291, 1525–1534 (2013). https://doi.org/10.1007/s00396-012-2873-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2873-x

Keywords

Navigation