Skip to main content

Advertisement

Log in

Green PU resin from an accelerated Non-isocyanate process with microwave radiation

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The ring opening between BCC with di-amine by conventional heating (130 °C for 48 h) is a time-consuming and non-efficient process. This work has been aiming at accelerating its ring-opening reaction by a microwave radiation process. Besides, catalyst and solvent selections of this PU reaction system, the microwave power output, radiation time, catalyst and reaction media were major consideration of this research. A catalyst, TBAC or LiBr had been applied on each microwave-assisted ring-opening polymerization of BCC with Jeffamine D-2000. A similar average molecular weight of NH2-PU oligomer was obtained from a 50 min microwave radiation by using 50 W power output. The radiation system with TBAC as catalyst, and it resulted in a formation of NH2-PU oligomer with Mn and Mw were 12,997 and 15,580, and that of 10,882 and 13,508 with LiBr as catalyst. The solvent polarity, catalyst solubility and microwave output energy in this radiation system were considered as important factors for this new green process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Scheme 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dieterich D, Grigat E, Hahn W (1985) Chapter 2. In: Oertel G (ed) Polyurethane handbook. Carl Hanser, Munich, p 24

    Google Scholar 

  2. Chen GN, Chen KN (1997) Self-curing behaviors of single pack aqueous-based polyurethane system. J Appl Polym Sci 63:1609

    Article  CAS  Google Scholar 

  3. Chen GN, Chen KN (1999) Dual-curing of anionic aqueous-based polyurethane at ambient temperature. J Appl Polym Sci 67:1661

    Article  Google Scholar 

  4. Chen GN, Chen KN (1999) Hybridization from aqueous-based polyurethane and glycidyl methacrylate copolymer. J Appl Polym Sci 71:903

    Article  CAS  Google Scholar 

  5. Shao CH, Wang TZ, Chen GN, Chen KJ, Yeh JT, Chen KN (2000) Aqueous-based polyurethane with dual-functional curing agent. J Polym Res 7:41

    Article  CAS  Google Scholar 

  6. Huang WK, Yeh JT, Chen KN (2002) Curing of combustion properties of a PU coating system with UV-reactive phosphazene. J Appl Polym Sci 85:1980

    Article  CAS  Google Scholar 

  7. Chen PC, Wang SC, Yeh JT, Chen JN (2007) New cross-linked polymer from a rapid polymerization of acrylic acid with Tri-aziridine containing compound. J Appl Polym Sci 104:809

    Article  CAS  Google Scholar 

  8. Chen WH, Chen PC, Yeh JT, Chen KN (2009) Hydrophilic UV-curable PU resins for PET micro-fiber applications. J Polym Res 16:329

    Article  CAS  Google Scholar 

  9. Chen WH, Chen PC, Wang SC, Yeh JT, Huang CY, Chen KN (2009) UV-curable PDMS-containing PU system for hydrophobic textile surface treatment. J Polym Res 16:601

    Article  CAS  Google Scholar 

  10. Wang SC, Chen PC, Hwang JZ, Yeh JT, Huang CY, Chen KN (2012) Performance properties of self-curing aqueous-based PU system with tri-glycidyl phosphate curing agent. J Polym Res 19:9844

    Article  Google Scholar 

  11. Wang SC, Chen PC, Yeh JT, Chen KN (2007) A New curing agent for self-curing system of aqueous-based PU dispersion. React Funct Polym 67:299

    Article  CAS  Google Scholar 

  12. Lai JZ, Ling HJ, Yeh JT, Chen KN (2004) Single component self-curable aqueous-based PU system with New aziridinyl curing agent. J Appl Polym Sci 91:1997

    Article  CAS  Google Scholar 

  13. Choudhary G, Peddinti RK (2011) An expeditious, highly efficient, catalyst-free and solvent-free synthesis of nitroamines and nitrosulfides by Michael addition. Green Chem 13:276

    Article  CAS  Google Scholar 

  14. Chen PC, Wang SC, Hwang JZ, Yeh JT, Huang CY, Chen KN (2011) A New self-polymerization of acrylic acid with a mono-aziridine containing compound. J Chin Chem Soc 57:901

    Google Scholar 

  15. Little R, Masjedizadeh M, Wallquist O, Mcloughlin (1995) The intramolecular Michael reaction. J Org React 47:315

    CAS  Google Scholar 

  16. Mather B, Viswanathan K, Miller K, Long T (2006) Michael addition reactions in macromolecular design for emerging technologies. Prog Polym Sci 31:487

    Article  CAS  Google Scholar 

  17. Moszner N, Volkel T, Clausbruch SC, Geiter E, Batliner N, Rheinberger V (2002) Sol–gel materials, 1. Synthesis and hydrolytic condensation of New cross-linking alkoxysilane methacrylates and light-curing composites based upon the condensates. Macromol Mater Eng 287:339

    Article  CAS  Google Scholar 

  18. Wang SC, Chen PC, Hwang JZ, Huang CY, Yeh JT, Chen KN (2012) A new tri-functional azetidine compound for self-curing aqueous-based PU system. J Appl Polym Sci 124:175

    Article  CAS  Google Scholar 

  19. Chen WH, Yeh JT, Huang CY, Chen KN (2008) UV-curable fluorine-containing IPN system for fabric water-repellency treatment. J Polym Eng 28:517

    CAS  Google Scholar 

  20. Hwang J-Z, Wang S-C, Chen P-C, Chen K-N (2011) Ambient temperature curable hydrophilic PU oligomer, method for synthesizing the same and surface treatment method of using the same. Patent US 8,053,488 B2

  21. Chen W-H, Chen P-C, Wang S-C, Chen K-N (2010) Long-lasting water-repellent textile treatment process using an ambient temperature curable polydimethylsiloxane-containing polyurethane PU system. Patent US 2010/0092689 A1

  22. Hwang J-Z, Wang S-C, Chen P-C, Chen K-N (2012) Preparing method for reactive hydrophilic polyurethane resins and their applications at ambient temperature. Patent ROC I 362394

  23. Lee M-H, Shih Y-P, Chen K-N, Ni J-C (2008) A method for treating surface of textile. Patent ROC I297396

  24. Chen WJ, Wang SC, Chen PC, Chen CW, Chen KN (2008) Hybridization of aqueous PU/epoxy resin via a dual self-curing process. J Appl Polym Sci 110:147

    Article  CAS  Google Scholar 

  25. Wang SC, Chen PC, Yeh JT, Chen KN (2008) Curing reaction of amino-terminated aqueous-based polyurethane dispersion with triglycidyl-containing compound. J Appl Polym Sci 110:725

    Article  CAS  Google Scholar 

  26. Kaewpirom S, Kunwong D (2012) Curing behavior and cured film performance of easy-to-clean UV-curable coatings based on hybrid urethane acrylate oligomers. J Polym Res 19:9995

    Article  Google Scholar 

  27. Liu T, Pan X, Wu Y, Zhang T, Zheng Z, Ding X, Peng Y (2012) Synthesis and characterization of UV-curable waterborne polyurethane acrylate possessing perfluorooctanoate side-chains. J Polym Res 19:9741

    Article  Google Scholar 

  28. Shi Z (2012) Preparation and characterization of high-strength elastomers with high poly(trifluoropropylmethyl)siloxane content into polyurethane urea. J Polym Res 20:57

    Article  CAS  Google Scholar 

  29. Chen S, Wang Q, Wang T (2012) Preparation, tensile, damping and thermal properties of polyurethanes based on various structural polymer polyols: effects of composition and isocyanate index. J Polym Res 19:9994

    Article  Google Scholar 

  30. Sardon H, Irusta L, Santamaría P, Fernández-Berridi MJ (2012) Thermal and mechanical behaviour of self-curable waterborne hybrid polyurethanes functionalized with (3-aminopropyl)triethoxysilane (APTES). J Polym Res 19:995

    Article  Google Scholar 

  31. Lai SM, Lan YC (2013) Shape memory properties of melt-blended polylactic acid (PLA)/thermoplastic polyurethane (TPU) bio-based blends. J Polym Res 20:140

    Article  Google Scholar 

  32. Hwang JZ, Wang SC, Chen PC, Huang CY, Yeh JT, Chen KN (2012) A new UV-curable PU resin obtained through a nonisocyanate process and used as a hydrophilic textile treatment. J Polym Res 19:9900

    Article  Google Scholar 

  33. Hwang JZ, Chang GJ, Lin JJ, Tsai CW, Wang SC, Chen PC, Chen KN, YEH JT (2013) Functional polyurethane prepolymer, method of preparing polyurethane by using the same, and application method thereof. Patent US 20130004677

  34. Ochiai B, Endo T (2005) Carbon dioxide and carbon disulfide as resources for functional polymers. Prog Polym Sci 30:183

    Article  CAS  Google Scholar 

  35. Park DW, Moon JY, Jang HJ, Kim MR, Lee JK, Ha CS (1998) Catalytic utilization of carbon dioxide to polymer blends via cyclic carbonate. React Kinet Catal Lett 65:219

    Article  CAS  Google Scholar 

  36. Rokicki G, Piotrowska A (2002) A new route to polyurethanes from ethylene carbonate, diamines and diols. Polym 43:2927

    Article  CAS  Google Scholar 

  37. Tomita H, Sanda F, Endo T (2001) Polyaddition behavior of bis(five-and six-membered cyclic carbonate)s with diamine. J Polym Sci, A: Polym Chem 39:860

    Article  CAS  Google Scholar 

  38. Ochiai B, Inoue S, Endo T (2005) One-pot non-isocyanate synthesis of polyurethanes from bisepoxide, carbon dioxide, and diamine. J Polym Sci, A: Polym Chem 43:6613

    Article  CAS  Google Scholar 

  39. Kihara N, Hara N, Endo T (1993) Catalytic activity of various salts in the reaction of 2,3-epoxypropyl phenyl ether and carbon dioxide under atmospheric pressure. J Org Chem 58:6198

    Article  CAS  Google Scholar 

  40. Kihara N, Endo T (1993) Synthesis and properties of poly(hydroxyurethane)s. J Polym Sci, A: Polym Chem 31:2765

    Article  CAS  Google Scholar 

  41. Kihara N, Kushida Y, Endo T (1996) Optically active poly(hydroxyurethane)s derived from cyclic carbonate and L-lysine derivatives. J Polym Sci, A: Polym Chem 34:2173

    Article  CAS  Google Scholar 

  42. Doro F, Winnertz P, Leitner W, Prokofieva A, Müller TE (2011) Adapting a Wacker-type catalyst system to the palladium-catalyzed oxidative carbonylation of aliphatic polyols. Green Chem 13:292

    Article  CAS  Google Scholar 

  43. Gedye R, Smith F, Westaway K, Ali H, Baldisera L, Laberge L, Rousell J (1986) The use of microwave ovens for rapid organic synthesis. Tetra Lett 27:279

    Article  CAS  Google Scholar 

  44. Giguere RJ, Bray TL, Duncan SM, Majetich G (1986) Application of commercial microwave ovens to organic synthesis. Tetra Lett 27:4945

    Article  CAS  Google Scholar 

  45. Mark C, Bagley RL, Jenkins M, Caterina L, Christopher M, Robin W (2005) A simple continuous flow microwave reactor. J Org Chem 70:7003

    Article  Google Scholar 

  46. Loupy A (2002) Chapter 6. Microwaves in organic synthesis. Wiley-VCH, Weinheim, p 181

    Book  Google Scholar 

  47. Adam D (2003) Microwave chemistry: Out of the kitchen. Nature 421:571

    Article  CAS  Google Scholar 

  48. Gronnow MJ, White RJ, Clark JH, Macquarrie DJ (2005) Energy efficiency in chemical reactions: A comparative study of different reaction techniques. Org Pro Res Dev 9:516

    Article  CAS  Google Scholar 

  49. Raner KD, Strauss CR, Trainor RW, Thorn JS (1995) A New microwave reactor for batchwise organic synthesis. J Org Chem 60:2456

    Article  CAS  Google Scholar 

  50. Loupy A, Petit A, Hamelin J, Texier-Boullet F, Jacquault P, Mathé D (1998) New solvent free organic synthesis using focused microwaves. Synthesis 1213

  51. Kappe CO (2004) Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed 43:6250

    Article  CAS  Google Scholar 

  52. Kuhnert N (2002) Microwave-assisted reactions in organic synthesis. Angew Chem Int Ed 41:1863

    Article  CAS  Google Scholar 

  53. Lidström P, Tierney J, Wathey B, Westman J (2001) Microwave assisted organic synthesis—a review. Tetrahedron 57:9225

    Article  Google Scholar 

  54. Gabriel C, Gabriel S, Grant EH, Halstead BSJ, Mingos DMP (1998) Dielectric parameters relevant to microwave dielectric heating. Chem Soc Rev 27:213

    Article  CAS  Google Scholar 

  55. Galema SA (1997) Microwave chemistry. Chem Soc Rev 26:233

    Article  CAS  Google Scholar 

  56. Caddick S (1995) Microwave assisted organic reactions. Tetrahedron 51:10403

    Article  CAS  Google Scholar 

  57. Leadbeater NE, Torenius HM (2002) A study of the ionic liquid mediated microwave heating of organic solvents. J Org Chem 67:3145

    Article  CAS  Google Scholar 

  58. Loupy A, Régnier S (1999) A versatile new synthesis of 4-aryl- and heteroaryl-[3,4-c]pyrrolocarbazoles by [4 + 2] cycloaddition followed by palladium catalysed cross coupling. Tetra Lett 40:6221

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of authors (K. –N. Chen) is indebted to National Science Council of Taiwan, Republic of China for the financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kan-Nan Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, JZ., Chen, CL., Huang, CY. et al. Green PU resin from an accelerated Non-isocyanate process with microwave radiation. J Polym Res 20, 195 (2013). https://doi.org/10.1007/s10965-013-0195-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0195-4

Keywords

Navigation