Skip to main content
Log in

Preparation and characterization of high-strength elastomers with high poly(trifluoropropylmethyl)siloxane content into polyurethane urea

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A series of poly(trifluoropropylmethyl)siloxane-block-polyurethane urea (PUUFS) films containing over 30 wt% poly(trifluoropropylmethyl)siloxane (PFS) were prepared via the three-step process that the prepolymer was synthesized from poly(tetramethylene oxide) (PTMO) and toluene diisocyanate (TDI), chain-extended with α,ω-bis(3-aminopropyldiethoxylsilane) poly(trifluoropropylmethyl)siloxane (APFS), and then with 3,3′-dichloro-4,4′-diaminodiphenylmethane (DDDPM). The films were formed through moisture curing and they were characterized using Fourier transform infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy, X-ray Diffraction, dynamic mechanical analysis, thermogravimetric analysis, mechanical testing, and so on. The influence of the concentration ratios between hard and soft segments (CHS/CSS) on the microstructure and properties of the materials was investigated. Higher crosslink densities or extent of hydrogen bonding that result from higher hard segment concentrations enhanced the mechanical properties of the materials. The extent of the phase separation of materials initially decreased and then increased as the CHS/CSS elevated from 1.85 to 4.13. The material with a CHS/CSS of 3.01 exhibited the lowest phase separation and the highest crystallinity and tensile strength. In addition, the trend of the surface properties of the materials was similar to the change in tensile strength and associated with phase separation, hydrogen bonding, and crosslinkage. Moreover, the copolymer may have practical applications in coatings and adhesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jones RG, Ando W, Chojnowski J (2000) Silicon-containing polymers, the science and technology of their synthesis and applications. Kluwer Academic Publishers, Dordrecht, Section 1

    Google Scholar 

  2. Ward RS, Tian Y, White KA (1998) 216th ACS National Meeting, August 23–27, Boston, MA

  3. White KA, Ward RS, Wolcott CA, Wong K (1995) The American Chemical Society Polymer Division Symposium, Polymer surface modification for biomedical applications. April 2–5, Anaheim, CA

  4. Yilgor I, Riffle JS, Wilkes GL, McGrath JE (1982) Siloxane-urea segmented copolymers 1. Synthesis and characterization of model polymers from MDI and a, x-bis(aminopropyl) polydimethylsiloxane. Polym Bull 8:535–542

    Article  CAS  Google Scholar 

  5. Chen J, Gardella JA Jr (1998) Solvent effects on the surface composition of poly(dimethylsiloxane)-co-polystyrene/polystyrene blends. Macromolecules 31:9328–9336

    Article  CAS  Google Scholar 

  6. Koberstein JT, Russel TP (1986) Simultaneous SAXS-DSC study of multiple endothermic behavior in polyether based polyurethane block copolymers. Macromolecules 19:714–720

    Article  CAS  Google Scholar 

  7. Mense CW, Yang XZ, Yang DC, Hsu SL (1992) Spectroscopic analysis of ordering and phase-separation behavior of model polyurethane in a restricted geometry. Macromolecules 25:925–932

    Article  Google Scholar 

  8. Lelah MD, Cooper SL (1996) Polyurethane in medicine. CRC Press, Boca Raton, FL

    Google Scholar 

  9. Lee HS, Wang YK, Hsu SL (1987) Spectroscopic analysis of phase separation behavior of model polyurethanes. Macromolecules 20:2089–2095

    Article  CAS  Google Scholar 

  10. Yilgor E, Unal S, Makal U, Yilgor I (2001) Influence of hydrogen bonding on the properties of silicone copolymers. Polym Prepr 42:120–121

    CAS  Google Scholar 

  11. Kajiyama M, Kakimoto MA, Imai Y (1990) Synthesis and properties of new multiblock copolymers based on dimethyl siloxane and N-phenylated polyureas. Macromolecules 23:1244–1248

    Article  CAS  Google Scholar 

  12. Park HB, Kim CK, Lee YM (2002) Gas separation properties of polysiloxane/polyether mixed soft segment urethane urea membranes. J Membrane Sci 204:257–269

    Article  CAS  Google Scholar 

  13. Su T, Wang GY, Xu XD, Hu CP (2006) Preparation and properties of waterborne polyurethaneurea consisting of fluorinated siloxane units. J Polym Sci Part A Polym Chem 44:3365–3373

    Article  CAS  Google Scholar 

  14. Adhikari R, Gunatillake PA, Bown M (2003) Effect of polydimethylsiloxane macrodiol molecular weight on properties and morphology of polyurethane and polyurethaneurea. J Appl Polym Sci 90:1565–1573

    Article  CAS  Google Scholar 

  15. Sakurai S, Nokuwa S, Morimoto M, Shibayama M, Nomura S (1994) Changes in structure and properties due to mechanical fatigue for polyurethanes containing poly(dimethylsiloxane). Polymer 35:532–539

    Article  CAS  Google Scholar 

  16. Shibayama M, Suetsugu M, Sakurai S, Yamamoto T, Nomura S (1991) Structure characterization of polyurethanes containing poly(dimethylsiloxane). Macromolecules 24:6254–6262

    Article  CAS  Google Scholar 

  17. Chen X, Gardella JA, Ho T, Wynne KJ (1995) Surface Composition of a Series of Dimethylsiloxane Urea Urethane Segmented Copolymers Studied by Electron Spectroscopy for Chemical Analysis. Macromolecules 28:1635–1642

    Article  CAS  Google Scholar 

  18. Benrashid R, Nelson GL (1994) Synthesis of new siloxane urethane block copolymers and their properties. J Polym Sci Part A Polym Chem 32:1847–1865

    Article  CAS  Google Scholar 

  19. Sha’aban AK, McCartney S, Patel N, Yilgor I, Riffle JS, Dwight DW, McGrath JE (1983) ESCA studies on poly(dimethylsiloxane)-urethane copolymers and their blends with segmented polyether-urethanes. Polym Prepr 24:130–133

    Google Scholar 

  20. Fan QL, Fang JL, Chen QM, Yu XH (1999) Synthesis and properties of polyurethane modified with aminoethylaminopropyl poly(dimethyl siloxane). J Appl Polym Sci 74:2552–2558

    Article  CAS  Google Scholar 

  21. Adhikari R, Gunatillake PA, McCarthy SJ, Bown M, Meijs GF (2003) Low-modulus siloxane-based polyurethanes. Part II. Effect of chain extender structure on properties and morphology. J Appl Polym Sci 87:1092–1100

    Article  CAS  Google Scholar 

  22. Adhikari R, Gunatillake PA, Mccarthy SJ, Meijs GF (2002) Low-modulus siloxane-based polyurethanes. I. Effect of the chain extender 1,3-bis(4-hydroxybutyl)1,1,3,3-tetramethyldisiloxane (BHTD) on properties and morphology. J Appl Polym Sci 83:736–746

    Article  CAS  Google Scholar 

  23. Klein PG, Ebdon JR, Hourston DJ (1988) Polyurethane-polysiloxane interpenetrating networks: polyetherurethane-poly(phenylmethylsiloxane) systems. Polymer 29:1079–1085

    Article  CAS  Google Scholar 

  24. Shi ZD, Wang XL (2009) Preparation and Characterization of Polyurethane-block- poly(trifluoropropylmethyl)siloxane Elastomers. Polym Advan Technol 12:1017–1023

    Article  Google Scholar 

  25. Stanciu A, Airinei A, Timpu D, Ioanid A, Ioan C, Bulacovschi V (1999) Polyurethane/polydimethylsiloxane segmented copolymers. Eur Polym J 35:1959–1965

    Article  CAS  Google Scholar 

  26. Sheth JP, Aneja A, Wilkes GL, Yilgor E, Atilla GE, Yilgor I, Beyer FL (2004) Influence of system variables on the morphological and dynamic mechanical behavior of polydimethylsiloxane based segmented polyurethane and polyurea copolymers: a comparative perspective. Polymer 45:6919–6932

    Article  CAS  Google Scholar 

  27. Hoffman JJ, Leir CM (1991) Tetramethylammonium 3-aminopropyl dimethylsilanolate—A new catalyst for the synthesis of high purity, high molecular weight α, ω-bis(aminopropyl) polydimethylsiloxanes. Polym Int 24:131–138

    Article  CAS  Google Scholar 

  28. Madhavan K, Reddy BSR (2006) Synthesis and characterization of poly(dimethylsiloxane-urethane) elastomers: Effect of hard segments of polyurethane on morphological and mechanical properties. J Polym Sci Part A Polym Chem 44:2980–2989

    Article  CAS  Google Scholar 

  29. Shi ZD, Wang XL (2007) Synthesis of α,ω-bis(3-aminopropyldiethoxylsilane) Poly(trifluoropropylmethyl)siloxanes. e-Polymers no. 041

  30. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca, NY, p579

    Google Scholar 

  31. Bristow GM, Watson WF (1958) Cohesive energy densities of polymers 1. Cohesive energy densities of rubbers by swelling measurements. Trans Faraday Soc 54:1731–1741

    Article  CAS  Google Scholar 

  32. Grulke EA (1989) In: Brandrup J, Immergur EH (eds) Polymer handbook, 3rd edn. John Wiley & Son, Canada, p519 (Chapter 7)

    Google Scholar 

  33. Liu FQ, Tang XY (1995) Polymer Physics. Higher Education Press, Beijing, p108 (Chapter 4)

    Google Scholar 

  34. Sheth JP, Klinedinst DB, Wilkes GL (2005) Role of chain Symmetry and hydrogen bonding in segmented copolymers with monodisperse hard segments. Polymer 46:7317–7322

    Article  CAS  Google Scholar 

  35. Wang SK, Sung CSP (2002) Spectroscopic Characterization of Model Urea, Urethane Compound and Diamine Extender for Polyurethane-Urea. Macromolecules 35:883–888

    Article  CAS  Google Scholar 

  36. Amrollahi M, Mir Mohamad Sadeghi G (2008) Evaluation of Adhesion Strength, Flammability, and Degradation of HBCD-Containing Polyurethane Adhesives. J Appl Polym Sci 110:3538–3543

    Article  CAS  Google Scholar 

  37. Sekkar V, Gopalakrishnan S, Devi KA (2003) Studies on allophanate-urethane networks based on hydroxyl terminated polybutadiene: effect of isocyanate type on the network characteristics. Eur Polym J 39:1281–1290

    Article  CAS  Google Scholar 

  38. Sekkar V, Bhagawan SS, Prabhakaran N, Rao MR, Ninan KN (2000) Polyurethanes based on hydroxyl terminated polybutadiene: modeling of network parameters and correlation with mechanical properties. Polymer 41:6773–6786

    Article  CAS  Google Scholar 

  39. Chen RS, Chang CJ, Chang YH (2005) Synthesis and characterization of organosiloxane modified segmented polyether polyurethanes. J Polym Sci Part A Polym Chem 43:3482–3490

    Article  CAS  Google Scholar 

  40. Zhang T, Xi K, Yu X, Gu M, Guo S (2003) Synthesis, properties of fullerene-containing polyurethane–urea and its optical limiting absorption. Polymer 44:2647–2654

    Article  CAS  Google Scholar 

  41. Wang L, Shen YD, Lai XJ, Li ZJ, Liu M (2011) Synthesis and properties of crosslinked waterborne polyurethane. J Polym Res 18:469–476

    Article  CAS  Google Scholar 

  42. Petrovic ZS, Zavargo Z, Flynn JH, Mackinght WJ (1994) Thermal degradation of segmented polyurethanes. J Appl Polym Sci 51:1087–1095

    Article  CAS  Google Scholar 

  43. Grassie N, Zulfiqar M (1978) Thermal degradation of ammonium polymethacrylate and polymethacrylamide. J Polym Sci Polym Chem Ed 16:1563–1574

    Article  CAS  Google Scholar 

  44. Wen J, Somorjai G (1997) XPS Study of Surface Composition of a Segmented Polyurethane Block Copolymer Modified by PDMS End Groups and Its Blends with Phenoxy. Macromolecules 30:7206–7213

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support of the Guangdong Province Natural Science Foundation of China (no. 10452902001005886).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhendong Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Z. Preparation and characterization of high-strength elastomers with high poly(trifluoropropylmethyl)siloxane content into polyurethane urea. J Polym Res 20, 57 (2013). https://doi.org/10.1007/s10965-012-0057-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-0057-5

Keywords

Navigation