Skip to main content
Log in

Microwave-accelerated diastereoselective catalyst-free one-pot four-component synthesis of 2-(N-carbamoylacetamide)-substituted 2,3-dihydrothiophenes in glycerol

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

In the current study, glycerol was successfully employed as a nonvolatile, non-toxic, non-flammable, biodegradable, very cheap, easily accessible, and efficient reaction medium for the microwave-enhanced diastereoselective synthesis of 2-(N-carbamoylacetamide)-substituted 2,3-dihydrothiophenes via a catalyst-free one-pot four-component reaction. A versatile range of starting materials were used, and diverse products were obtained in good to excellent yields and very short reaction times. Moreover, the reaction medium was recovered and reused several times without any loss of the efficiency.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Fig. 2

Similar content being viewed by others

References

  1. Gu Y, Jérôme F (2010) Glycerol as a sustainable solvent for green chemistry. Green Chem 12:1127–1138

    Article  CAS  Google Scholar 

  2. Kerton M (2009) Renewable solvents alternative solvents for green chemistry. Royal Society of Chemistry, Cambridge

    Google Scholar 

  3. Li C-J, Chen L (2006) Organic chemistry in water. Chem Soc Rev 35:68–82

    Article  PubMed  Google Scholar 

  4. Dobras G, Orlińska B (2018) Aerobic oxidation of alkylaromatic hydrocarbons to hydroperoxides catalysed by N-hydroxyimides in ionic liquids as solvents. Appl Catal A Gen 561:59–67

    Article  CAS  Google Scholar 

  5. Leitner W (2002) Supercritical carbon dioxide as a green reaction medium for catalysis. Acc Chem Res 35:746–756

    Article  CAS  PubMed  Google Scholar 

  6. Shekouhy M, Khalafi-Nezhad A (2015) Polyethylene glycol-bonded 1, 8-diazabicyclo [5.4. 0] undec-7-ene (PEG–DBU) as a surfactant-combined base catalyst for the application of nucleosides as reagents in multi-component syntheses of 8-substituted pyrido [2, 3-d] pyrimidine-6-carbonitriles in water. Green Chem 17:4815–4829

    Article  CAS  Google Scholar 

  7. Safaei HR, Shekouhy M, Rahmanpur S, Shirinfeshan A (2012) Glycerol as a biodegradable and reusable promoting medium for the catalyst-free one-pot three component synthesis of 4H-pyrans. Green Chem 14:1696–1704

    Article  CAS  Google Scholar 

  8. Jordan A, Gathergood N (2015) Biodegradation of ionic liquids—a critical review. Chem Soc Rev 44:8200–8237

    Article  CAS  PubMed  Google Scholar 

  9. Amde M, Liu JF, Pang L (2015) Environmental application, fate, effects, and concerns of ionic liquids: a review. Environ Sci Technol 49:12611–12627

    Article  CAS  PubMed  Google Scholar 

  10. Holbrey JD, Reichert WM, Reddy R, Rogers R (2003) In Ionic liquids as green solvents: progress and prospects, ACS symposium series. American Chemical Society, Washington, pp 121–133

    Book  Google Scholar 

  11. De Simone JM, Tumas W (2003) Green chemistry using liquid and supercritical carbon dioxide. Oxford University Press, Oxford

    Google Scholar 

  12. Karam A, Villandier N, Delample M, Koerkamp CK, Douliez JP, Granet R, Krausz P, Barrault J, Jerome F (2008) Rational design of sugar-based-surfactant combined catalysts for promoting glycerol as a solvent. Chem Eur J 14:10196–10200

    Article  CAS  PubMed  Google Scholar 

  13. Wolfson A, Dlugy C, Shotland Y (2007) Glycerol as a green solvent for high product yields and selectivities. Environ Chem Lett 5:67–71

    Article  CAS  Google Scholar 

  14. Shekouhy M, Sarvestani AM, Khajeh S, Khalafi-Nezhad A (2015) Glycerol: a more benign and biodegradable promoting medium for catalyst-free one-pot multi-component synthesis of triazolo [1, 2-a] indazole-triones. RSC Adv 5:63705–63710

    Article  CAS  Google Scholar 

  15. Quan ZJ, Ren RG, Da YX, Zhang Z, Wang XC (2011) Glycerol as an alternative green reaction medium for multicomponent reactions using PS-PEG-OSO3H as catalyst. Synth Commun 41:3106–3116

    Article  CAS  Google Scholar 

  16. Singh S, Saquib M, Singh SB, Singh M, Singh J (2015) Catalyst free, multicomponent-tandem synthesis of spirooxindole-indazolones and spirooxindole-pyrazolines: a glycerol mediated green approach. RSC Adv 5:45152–45157

    Article  CAS  Google Scholar 

  17. Singh S, Saquib M, Singh M, Tiwari J, Tufail F, Singh J, Singh J (2016) A catalyst free, multicomponent-tandem, facile synthesis of pyrido [2, 3-d] pyrimidines using glycerol as a recyclable promoting medium. N J Chem 40:63–67

    Article  CAS  Google Scholar 

  18. Sohal HS, Goyal A, Sharma R, Khare R, Kumar S (2013) Glycerol mediated, one pot, multicomponent synthesis of dihydropyrano [2, 3-c] pyrazoles. Eur J Chem 4:450–453

    Article  CAS  Google Scholar 

  19. Wolfson A, Dlugy C (2007) Palladium-catalyzed Heck and Suzuki coupling in glycerol. Chem Pap 61:228–232

    Article  CAS  Google Scholar 

  20. Kappe CO, Dallinger D (2009) Controlled microwave heating in modern organic synthesis: highlights from the 2004–2008 literature. Mol Divers 13:71

    Article  CAS  PubMed  Google Scholar 

  21. Caddick S, Fitzmaurice R (2009) Tetrahedron 65:3325

    Article  CAS  Google Scholar 

  22. Loupy A (2006) Microwaves in organic synthesis, 2nd edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  23. Larhed M, Olofsson K (eds) (2006) Microwave methods in organic synthesis. Springer, New York

    Google Scholar 

  24. Kappe CO, Stadler A (2005) Microwaves in organic and medicinal chemistry. Wiley-VCH, Weinheim

    Book  Google Scholar 

  25. Leadbeater NE (2011) Microwave heating as a tool for sustainable chemistry. CRC Press, Boca Raton

    Google Scholar 

  26. Collins JM, Leadbeater NE (2007) Microwave energy: a versatile tool for the biosciences. Org Biomol Chem 5:1141–1150

    Article  CAS  PubMed  Google Scholar 

  27. Rizzolo F, Sabatino G, Chelli M, Rovero P, Papini AM (2007) A convenient microwave-enhanced solid-phase synthesis of difficult peptide sequences: case study of gramicidin A and CSF114 (Glc). Int J Pept Res Ther 13:203–208

    Article  CAS  Google Scholar 

  28. Coantic S, Subra G, Martinez J (2008) Microwave-assisted solid phase peptide synthesis on high loaded resins. Int J Pept Res Ther 14:143–147

    Article  CAS  Google Scholar 

  29. Bacsa B, Bősze S, Kappe CO (2010) Direct solid-phase synthesis of the β-amyloid (1-42) peptide using controlled microwave heating. J Org Chem 75:2016–2103

    Article  CAS  Google Scholar 

  30. Hjørringgaard CU, Pedersen JM, Vosegaard T, Nielsen NC, Skrydstrup T (2009) An automatic solid-phase synthesis of peptaibols. J Org Chem 74:1329–1332

    Article  PubMed  CAS  Google Scholar 

  31. Bogdal D, Prociak A (2007) Microwave-enhanced polymer chemistry and technology. Wiley, Oxford

    Book  Google Scholar 

  32. Hoogenboom R, Schubert US (2007) Microwave-assisted polymer synthesis: recent developments in a rapidly expanding field of research. Macromol Rapid Commun 28:368–386

    Article  CAS  Google Scholar 

  33. Bardts M, Gonsior N, Ritter H (2008) Polymer synthesis and modification by use of microwaves. Macromol Chem Phys 209:25–31

    Article  CAS  Google Scholar 

  34. Holtze C, Antonietti M, Tauer K (2006) Ultrafast conversion and molecular weight control through temperature programming in microwave-induced miniemulsion polymerization. Macromolecules 39:5720–5728

    Article  CAS  Google Scholar 

  35. Barlow S, Marder SR (2003) Single-mode microwave synthesis in organic materials chemistry. Adv Funct Mater 13:517–518

    Article  CAS  Google Scholar 

  36. Perelaer J, De Gans BJ (2006) Schubert US. Ink-jet printing and microwave sintering of conductive silver tracks. Adv Mater 18:2101–2104

    Article  CAS  Google Scholar 

  37. Conner WC, Tompsett GA (2008) How could and do microwaves influence chemistry at interfaces? J Phys Chem B 112:2110–2118

    Article  CAS  PubMed  Google Scholar 

  38. Campbell NL, Clowes R, Ritchie LK, Cooper AI (2009) Rapid microwave synthesis and purification of porous covalent organic frameworks. Chem Mater 21:204–206

    Article  CAS  Google Scholar 

  39. Yoshikawa O, Sonobe T, Sagawa T, Yoshikawa S (2009) Single mode microwave irradiation to improve the efficiency of polymer solar cell based on poly (3-hexylthiophene) and fullerene derivative. Appl Phys Lett 94:083301–083304

    Article  CAS  Google Scholar 

  40. Gharibeh M, Tompsett GA, Yngvesson KS, Conner WC (2009) Microwave synthesis of zeolites: effect of power delivery. J Phys Chem B 113:8930–8940

    Article  CAS  PubMed  Google Scholar 

  41. Tsuji M, Hashimoto M, Nishizawa Y, Kubokawa M, Tsuji T (2005) Microwave-assisted synthesis of metallic nanostructures in solution. Chem Eur J 11:440–452

    Article  CAS  PubMed  Google Scholar 

  42. Polshettiwar V, Nadagouda MN, Varma RS (2008) The synthesis and applications of a micro-pine-structured nanocatalyst. Chem Commun 6318–6320

  43. Roy MD, Herzing AA, De Paoli Lacerda AH, Becker ML (2008) Emission-tunable microwave synthesis of highly luminescent water soluble CdSe/ZnS quantum dots. Chem Commun 2106–2108

  44. Washington Ii AL, Strouse GF (2008) Microwave synthesis of CdSe and CdTe nanocrystals in nonabsorbing alkanes. J Am Chem Soc 130:8916–8922

    Article  CAS  Google Scholar 

  45. Duque JG, Pasquali M, Schmidt HK (2008) Antenna chemistry with metallic single-walled carbon nanotubes. J Am Chem Soc 130:15340–15347

    Article  CAS  PubMed  Google Scholar 

  46. Bilecka I, Niederberger M (2010) Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2:1358–1374

    Article  CAS  PubMed  Google Scholar 

  47. Lill JR (2009) Microwave assisted proteomics. RSC Publishing, Cambridge

    Google Scholar 

  48. Lill JR, Ingle ES, Liu PS, Pham V, Sandoval WN (2007) Microwave-assisted proteomics. Mass Spectrom Rev 26:657–671

    Article  CAS  PubMed  Google Scholar 

  49. Young DD, Nichols J, Kelly RM, Deiters A (2009) Microwave activation of enzymatic catalysis. J Am Chem Soc 130:10048–10049

    Article  CAS  Google Scholar 

  50. Edwards WF, Young DD, Deiters A (2009) The effect of microwave irradiation on DNA hybridization. Org Biomol Chem 7:2506–2508

    Article  CAS  PubMed  Google Scholar 

  51. Rahman KM, Thurston DE (2009) Chem Commun 2875

  52. Larhed M, Hallberg A (2001) Microwave-assisted high-speed chemistry: a new technique in drug discovery. Drug Discov Today 6:406–416

    Article  CAS  PubMed  Google Scholar 

  53. Kappe CO, Dallinger D (2006) The impact of microwave synthesis on drug discovery. Nat Rev Drug Discov 5:51–55

    Article  CAS  PubMed  Google Scholar 

  54. Colombo M, Peretto I (2008) Chemistry strategies in early drug discovery: an overview of recent trends. Drug Discov Today 13:677–684

    Article  CAS  PubMed  Google Scholar 

  55. Santagada V, Frecentese F, Perissutti E, Fiorino F, Severino B, Caliendo G (2009) Microwave assisted synthesis: a new technology in drug discovery. Mini-Rev Med Chem 9:340–358

    Article  CAS  PubMed  Google Scholar 

  56. Grant E, Halstead BJ (1998) Dielectric parameters relevant to microwave dielectric heating. Chem Soc Rev 27:213–224

    Article  Google Scholar 

  57. Michael P, Mingos D (1991) Tilden lecture. Applications of microwave dielectric heating effects to synthetic problems in chemistry. Chem Soc Rev 20:1–47

    Article  Google Scholar 

  58. Kappe CO, Dallinger D, Murphree SS (2009) Practical microwave synthesis for organic chemists: strategies instruments and protocols. Wiley-VCH, Weinheim

    Google Scholar 

  59. Wen M, Sun PP, Luo X, Deng WP (2018) Cu (II)-catalyzed one-pot synthesis of fully substituted dihydrothiophenes and thiophenes from thioamides and enynones. Tetrahedron 74:4168–4173

    Article  CAS  Google Scholar 

  60. Gopinath P, Chandrasekaran S (2010) Synthesis of functionalized dihydrothiophenes from doubly activated cyclopropanes using tetrathiomolybdate as the sulfur transfer reagent. J Org Chem 76:700–703

    Article  PubMed  CAS  Google Scholar 

  61. Kumar A, Gupta G, Srivastava S (2011) Functional ionic liquid mediated synthesis (FILMS) of dihydrothiophenes and tacrine derivatives. Green Chem 13:2459–2463

    Article  CAS  Google Scholar 

  62. Maruoka H, Yamazaki M, Tomioka Y (2004) Synthesis of dihydrothieno [2, 3-b] pyridines based on titanium (IV) chloride-mediated michael reactions of 2-amino-4, 5-dihydro-3-thiophenecarbonitriles with α, β-unsaturated ketones. J Heterocycl Chem 41:641–646

    Article  CAS  Google Scholar 

  63. Dotsenko VV, Krivokolysko SG, Litvinov VP (2009) The Mannich reaction in the synthesis of N, S-containing heterocycles 9. A new approach to thieno [2, 3-d] pyrimidines. Russ Chem Bull 58:1524–1525

    Article  CAS  Google Scholar 

  64. Sun J, Zhang LL, Xia EY, Yan CG (2009) Synthesis of dihydrothiophenes or spirocyclic compounds by domino reactions of 1, 3-thiazolidinedione. J Org Chem 74:3398–3401

    Article  CAS  PubMed  Google Scholar 

  65. Lu GP, Zeng LY, Cai C (2011) An efficient synthesis of dihydrothiophene ureidoformamides by domino reactions of 1, 3-thiazolidinedione under catalyst-free conditions. Green Chem 13:998–1003

    Article  CAS  Google Scholar 

  66. Sun J, Xia EY, Zhang LL, Yan CG (2009) Triethylamine-catalyzed domino reactions of 1, 3-thiazolidinedione: a facile access to functionalized dihydrothiophenes. Eur J Org Chem 2009:5247–5254

    Article  CAS  Google Scholar 

  67. Sun J, Xia E, Zhang L, Yan C (2010) A novel four-component reaction involving ring-opening/recyclization of 1,3-thiazolidinedione. Sci China Chem 53:863–868

    Article  CAS  Google Scholar 

  68. Sun J, Xia EY, Yao R, Yan CG (2011) Convenient synthesis of polyfunctional dihydrothiophenes with tandem reaction of 1, 3-thiazolidinedione, aldehyde, arylamine and ethyl cyanoacetate. Mol Divers 15:115–123

    Article  CAS  PubMed  Google Scholar 

  69. Yao R, Xia E, Sun J, Yan C (2011) Synthesis of functionalized thiophenes by four-component reactions of 1, 3-thiazolidinedione, aromatic aldehydes, cyanoacetamide and cyclic secondary amines. Chin J Chem 29:2461–2464

    Article  CAS  Google Scholar 

  70. Shi DQ, Zou Y, Hu Y, Wu H (2011) Improved synthesis of dihydrothiophenes derivatives under ultrasound irradiation. J Heterocycl Chem 48:896–900

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks are due to the Shiraz University Research Councils for the supporting of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohsen Shekouhy or Ali Khalafi-Nezhad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5036 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kordnezhadian, R., Shekouhy, M. & Khalafi-Nezhad, A. Microwave-accelerated diastereoselective catalyst-free one-pot four-component synthesis of 2-(N-carbamoylacetamide)-substituted 2,3-dihydrothiophenes in glycerol. Mol Divers 24, 737–751 (2020). https://doi.org/10.1007/s11030-019-09985-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-019-09985-w

Keywords

Navigation