Skip to main content
Log in

In situ atom transfer radical polymerization of styrene in the presence of nanoporous silica aerogel: Kinetic study and investigation of thermal properties

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Atom transfer radical polymerization (ATRP) of styrene was performed at 110 °C in the presence of organically modified silica aerogel. A hydrophobic silica aerogel was prepared by a two-step, acid–base catalyzed sol–gel polymerization of tetraethoxysilane (TEOS) and surface modification by hexamethyldisilazane (HMDS) at the ambient pressure drying (APD) condition. Fourier transform infrared spectroscopy (FTIR), nitrogen adsorption/desorption, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to characterize the silica aerogel. Kinetics of styrene ATRP was evaluated in the presence of silica aerogel. Molecular weight and molecular weight distribution were determined by gel permeation chromatography (GPC). There is a critical silica aerogel content that polymerization rate reaches to its lowest level. Thus, the sample with 1 wt% of silica aerogel shows minimum kapp with respect to the neat polystyrene. Differential scanning calorimetry (DSC) results reveals that competition between chains mobility and increase of molecular weight by addition of silica aerogel content results in an inconsiderable variation of the Tg value. The nanocomposite with 1 wt% of silica aerogel shows minimum Tg value (81.4 °C) respect to near polystyrene (94 °C). Transmission electron microscopy (TEM) was used to exhibit the pore size distribution of silica aerogel and either the disappearing of pores by a layer of polystyrene after polymerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Lee LJ, Zeng C, Cao X, Han X, Shen J, Xu G (2005) Polymer nanocomposite foams. Compos Sci Technol 65:2344–2363

    Article  CAS  Google Scholar 

  2. Manias E (2007) Nanocomposites: Stiffer by design. Nat Mater 6(1):9–11

    Article  CAS  Google Scholar 

  3. Mai Y-W, Yu Z-Z: Polymer Nanocomposites. Woodhead Publication (2006)

  4. Pinnavaia TJ, Beall GW (2001) Polymer-clay nanocomposites. Wiley

  5. Lee KM, Han CD (2003) Rheology of organoclay nanocomposites: Effects of polymer matrix/organoclay compatibility and the gallery distance of organoclay. Macromolecules 36:7165–7178

    Article  CAS  Google Scholar 

  6. Akelah A, Moet A (1996) Polymer-clay nanocomposites: Free-radical grafting of polystyrene on to organophilic montmorillonite interlayers. J Mater Sci 31:3589–3596

    CAS  Google Scholar 

  7. Wan X, Ying S (2000) Controlled radical polymerization catalyzed by CuCl/BDE complex in water medium. I. Polymerization of styrene and synthesis of poly(St-b-MMA). J Appl Polym Sci 75:802–807

    Article  CAS  Google Scholar 

  8. Nishikawa T, Kamigaito M, Sawamoto M (1999) Living radical polymerization in water and alcohols: Suspension polymerization of methyl methacrylate with RuCl2(PPh3)3 complex. Macromolecules 32:2204–2209

    Article  CAS  Google Scholar 

  9. Qiu J, Gaynor SG, Matyjaszewski K (1999) Emulsion polymerization of n-Butyl methacrylate by reverse atom transfer radical polymerization. Macromolecules 32:2872–2875

    Article  CAS  Google Scholar 

  10. Wenping W, Xiaoxiao J, Ming F, Hang J (2011) Synthesis of core-shell particles by batch emulsion polymerization of styrene and octavinyl polyhedral oligomeric silsesquioxane. J Polym Res 18(1):13–17

    Article  Google Scholar 

  11. Khezri K, Haddadi-Asl V, Roghani-Mamaqani H, Salami-Kalajahi M (2012) Encapsulation of organomodified montmorillonite with PMMA via in situ SR&NI ATRP in miniemulsion. J Polym Res 19:9868

    Article  Google Scholar 

  12. Xia J, Johnson T, Gaynor SG, Matyjaszewski K, DeSimone J (1999) Atom transfer radical polymerization in supercritical carbon dioxide. Macromolecules 32:4802–4805

    Article  CAS  Google Scholar 

  13. Roghani-Mamaqani H, Haddadi-Asl V, Salami-Kalajahi M (2012) In situ controlled radical polymerization: A review on synthesis of well-defined nanocomposites. Polym Rev 52:142–188

    Article  CAS  Google Scholar 

  14. Matyjaszewski K, Xia J (2001) Atom transfer radical polymerization. Chem Rev 101:2921–2990

    Article  CAS  Google Scholar 

  15. Roghani-Mamaqani H, Haddadi-Asl V, Najafi M, Salami-Kalajahi M (2012) Confinement effect of nanoclay platelets on the kinetics of polystyrene prepared via ATRP. J Appl Polym Sci 123:409–417

    Article  CAS  Google Scholar 

  16. Roghani-Mamaqani H, Haddadi-Asl V, Najafi M, Salami-Kalajahi M (2011) Preparation of tailor-made polystyrene nanocomposite with mixed clay-anchored and free chains via atom transfer radical polymerization. AICHE J 57:1873–1881

    Article  CAS  Google Scholar 

  17. Rahimi-Razin S, Haddadi-Asl V, Salami-Kalajahi M, Behboodi-Sadabad F, Roghani-Mamaqani H (2012) Matrix grafted multi-walled carbon nanotubes/poly(methyl methacrylate) nanocomposites synthesized by in situ RAFT polymerization: A kinetics study. Int J Chem Kinet 44:555–569

    Article  CAS  Google Scholar 

  18. Salami-Kalajahi M, Haddadi-Asl V, Rahimi-Razin S, Behboodi-Sadabad F, Roghani-Mamaqani H, Hemmati M (2011) Investigating the effect of pristine and modified silica nanopar-ticles on the kinetics of methyl methacrylate polymerization. Chem Eng J 174:368–375

    Article  CAS  Google Scholar 

  19. Salami-Kalajahi M, Haddadi-Asl V, Rahimi-Razin S, Behboodi-Sadabad F, Najafi M, Roghani-Mamaqani H (2012) A study on the properties of PMMA/silica nanocomposites prepared via RAFT polymerization. J Polym Res 19:9793–9804

    Article  Google Scholar 

  20. Xiong L, Liang H, Wang R, Chen L (2011) Novel route for the synthesis of poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) grafted titania nanoparticles via ATRP. J Polym Res 18:1017–1021

    Article  CAS  Google Scholar 

  21. Mohamadi S, Sharifi-Sanjani N, Foyouhi A (2012) Evaluation of graphene nanosheets influence on the physical properties of PVDF/PMMA blend. J Polym Res 20:46

    Article  Google Scholar 

  22. Hajian M, Reisi MR, Koohmareh GA, Jam ARZ (2012) Preparation and characterization of polyvinylbutyral/graphene nanocomposite. J Polym Res 19:9966–9973

    Article  Google Scholar 

  23. Lee SH, Dreyer DR, An J, Velamakanni A, Piner RD, Park S, Zhu Y, Kim SO, Bielawski CW, Ruoff RS (2010) Polymer brushes via controlled, surface-initiated atom transfer radical polymerization (ATRP) from graphene oxide. Macroml Rapid Comm 31:281–288

    Article  CAS  Google Scholar 

  24. Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JM, Pernicone N, Ramsay JDF, Sing KSW, Unger KK (1994) Physical and biophysical chemistry division commission on colloid and surface chemistry including catalysis. Pure Appl Chem 66:1739–1758

    Article  CAS  Google Scholar 

  25. Naik B, Ghosh NN (2009) A review on chemical methodologies for preparation of mesoporous silica and alumina based materials. Rec Pat Nanotech 3:213–224

    Article  CAS  Google Scholar 

  26. Yin J, Kim E-S, Yang J, Deng B (2012) Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification. J Membr Sci 423–424:238–246

    Article  Google Scholar 

  27. He J, Shen Y, Evans DG, Duan X (2006) Tailoring the performance of polymer composites via altering the properties of the intrapore polymers of MCM-48 nanocomposites as fillers. Compos Appl Sci Manuf 37:379–384

    Article  Google Scholar 

  28. Won J-H, Lee H-J, Yoon K-S, Hong YT, Lee S-Y (2012) Sulfonated SBA-15 mesoporous silica-incorporated sulfonated poly(phenylsulfone) composite membranes for low-humidity proton exchange membrane fuel cells: Anomalous behavior of humidity-dependent proton conductivity. Int J Hydrogen Energ 37:9202–9211

    Article  CAS  Google Scholar 

  29. Zhai S-R, Zheng J-L, Dong W, Sun Y-H, Deng F (2005) CTAB-assisted fabrication of mesoporous composite consisting of wormlike aluminosilicate shell and ordered MSU-S core. J Solid State Chem 178:85–92

    Article  CAS  Google Scholar 

  30. Tachibana J, Chiba M, Ichikawa M, Imamura T, Sasaki Y (1998) Supramolecular hybrid composites of metalloporphyrins and fullerene encapsulated in the ordered nano-channels of FSM-16 as oxygen carriers, and photo-catalysis for selective propene oxidation towards acetone. Supramol Sci 5:281–287

    Article  CAS  Google Scholar 

  31. Tsai J-C, Kuo J-F, Chen C-Y (2007) Synthesis and properties of novel HMS-based sulfonated poly(arylene ether sulfone)/silica nano-composite membranes for DMFC applications. Journal of Power Sources 174:103–113

    Article  CAS  Google Scholar 

  32. Suzuki N, Kiba S, Yamauchi Y (2011) Fabrication of mesoporous silica KIT-6/polymer composite and its low thermal expansion property. Mater Lett 65:544–547

    Article  CAS  Google Scholar 

  33. Xi J, Qiu X, Zhu W, Tang X (2006) Enhanced electrochemical properties of poly(ethylene oxide)-based composite polymer electrolyte with ordered mesoporousmaterials for lithium polymer battery. Microp Mesop Mater 88:1–7

    Article  CAS  Google Scholar 

  34. Tominaga Y, Igawa S, Asai S, Sumita M (2005) Ion-conductive properties of mesoporous silica-filled composite polymer electrolytes. Electrochim Acta 50:3949–3954

    Article  CAS  Google Scholar 

  35. Murakami K, Xue Y, Watanabe S, Kato T, Inoue Y, Sugawara K (2011) Synthesis of thermosensitive polymer/mesoporous silica composite and its temperature dependence of anion exchange property. J Colloid Interface Sci 354:771–776

    Article  CAS  Google Scholar 

  36. Wang X-L, Mei A, Li M, Lin Y, Nan C-W (2006) Effect of silane-functionalized mesoporous silica SBA-15 on performance of PEO-based composite polymer electrolytes. Solid State Ionics 177:1287–1291

    Article  CAS  Google Scholar 

  37. Baoping L, Jinan T, Hongjian L, Yueming S, Chunwei Y (2005) Structure and infrared emissivity of polyimide/mesoporous silica composite films. J Power Sourc 178:650–654

    Google Scholar 

  38. Hrubesh LW (1990) Aerogels: The world’s lightest solids. Chem Ind 24:824–827

    Google Scholar 

  39. Bond GC, Flamerz S (1987) Structure and reactivity of titania-supported oxides. Part 3: Reaction of isopropanol over vanadia-titania catalysts. Appl Catal 33:219–230

    Article  CAS  Google Scholar 

  40. Fricke J, Emmerling A (1992) Aerogels, preparation, properties, applications, chemistry. Spectr Appl Sol–gel Glass 77:37–87

    Article  CAS  Google Scholar 

  41. Mulder CAM, Van Lierop JG (1986) Preparation, densification and characterization of autoclave dried SiO2 gels. In: Fricke J. (ed.) Aerogels, 68–75

  42. Rao AV, Sakhare HM, Tamhankar AK, Shinde ML, Gadave DB, Wagh PB (1999) Influence of N, N-dimethylformamide additive on the physical properties of citric acid catalyzed TEOS silica aerogels. Mater Chem Phys 60:268–273

    Article  Google Scholar 

  43. Li WC, Lu AH, Guo SC (2002) Control of mesoporous structure of aerogels derived from cresol-formaldehyde. J Colloid Interface Sci 254(1):153–157

    Article  CAS  Google Scholar 

  44. Pierre AC, Elaloui E, Pajonk GM (1998) Comparison of the structure and porous texture of alumina gels synthesized by different methods. Langmuir 14:66–73

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid haddadi-Asl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirshafiei-Langari, SA., haddadi-Asl, V., Roghani-Mamaqani, H. et al. In situ atom transfer radical polymerization of styrene in the presence of nanoporous silica aerogel: Kinetic study and investigation of thermal properties. J Polym Res 20, 163 (2013). https://doi.org/10.1007/s10965-013-0163-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0163-z

Keywords

Navigation