Skip to main content
Log in

Relationship between microscopic deformations and macroscopic mechanical response of SAN/PB-g-SAN blends via interparticle distance concept

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The mechanical properties of SAN/PB-g-SAN blends of different compositions under uniaxial tensile tests were studied. Matrix ligament thickness (MLT) concept was employed to correlate microscopic deformations with macroscopic mechanical response. It was found that, the experimental values of the blends moduli are in a good agreement with the theoretical values obtained from Takayanagi and mixture rules in parallel models. The MLTs in which transition from brittle-to-ductile and from ductile-to-rubbery occur were determined according to interparticle distance model. Fractography studies of the samples with MLT values greater than brittle to ductile transition showed that rubber particles act as craze initiators rather than craze terminators. Due to poor overlapping of stress fields around the particles, no extensive shear yielding took place during the fracture process, leading to unstable macroscopic behavior. For the samples with MLTs smaller than brittle-ductile transition, a necked region developed. The stability of necked region increased with PB-g-SAN content, which resulted in improved post yield deformation stability. This process was accompanied by the participation of larger volume of material in the deformation process and strong overlapping of the stress field around the particles, which facilitated matrix shear yielding. Based on macroscopic response, this delocalized deformation manifested itself by a gradual decrease in load drop after yielding point. For the samples with PB-g-SAN content higher than 75 wt%, the great reduction in MLT and direct interconnection between the neighbor rubber particles caused the appearance of rubbery behavior. These results were also confirmed by analyzing of the fractured surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Van Melick HGH, Govaert LE, Meijer HEH (2003) Polymer 44:3579–3591

    Article  Google Scholar 

  2. Donald AM, Kramer EJ (1982) J Mater Sci 17:2351

    Article  CAS  Google Scholar 

  3. Donald AM, Kramer EJ (1982) J Polym Sci part B 20:1129–1141

    CAS  Google Scholar 

  4. Haward RN, Hay JN, Parsons IW, Adam G, Owadh AAK, Boxnyak CP, Aref-Azaf A, Cross A (1980) Colloid Polym Sci 258(6):643–62

    Article  CAS  Google Scholar 

  5. Tervoort TA, Govaert LE (2000) J Rheol 44(6):1263–77

    Article  CAS  Google Scholar 

  6. Aboulfaraj M, G’Sell C, Mangelinck D, McKenna GB (1994) J Non-Crystalline Solids 172–174:615–21

    Article  Google Scholar 

  7. G’Sell C (1986) Plastic deformation of glassy polymers: constitutive equations and macromolecular mechanisms. In: McQueen H (ed) Strength of metals and alloys. Pergamon Press, Oxford, pp 1943–82

    Google Scholar 

  8. Bauwens JC (1978) J Mater Sci 13(7):1443–8

    Article  CAS  Google Scholar 

  9. Govaert LE, Timmermans PHM, Brekelmans WAM (2000) J Eng Mater Technol 122(2):177–85

    Article  CAS  Google Scholar 

  10. Govaert LE, van Melick HGH, Meijer HEH (2001) Polymer 42(3):1271–4

    Article  CAS  Google Scholar 

  11. Van Melick HGH et al (2003) Polymer 44:1171–1179

    Article  Google Scholar 

  12. G’Sell C, Hiver JM, Dahouin A, Souahi A (1992) J Mater Sci 27(18):5031–9

    Article  Google Scholar 

  13. Spitzig WA, Richmond O (1979) Polym Eng Sci 19:1129–39

    Article  CAS  Google Scholar 

  14. Boyce MC, Arruda EM, Jayachandran R (1994) Polym Eng Sci 34(9):716–25

    Article  CAS  Google Scholar 

  15. Zaroulis JS, Boyce MC (1997) Polymer 38(6):1303–15

    Article  CAS  Google Scholar 

  16. Govaert LE et al (2001) Polymer 42:1271–1274

    Article  CAS  Google Scholar 

  17. Kierkels JTA, Dona CL, Tervoort TA, Govaert LE (2008) Kinetics of Re-embrittlement of (Anti)plasticized Glassy Polymers After Mechanical Rejuvenation”. J Polym Sci Part B Polym Phys 46:134–147

    Article  CAS  Google Scholar 

  18. Kinloch AJ, Young RJ (1983) Fracture Behavior of Polymers. Applied Science, London

    Google Scholar 

  19. Walker I, Collyer AA (1994) Rubber Toughened Engineering Plastics Chapman & Hall, London

  20. Bucknall CB (1977) Toughened Plastics Applied Science. Materials Science Series, London

    Google Scholar 

  21. Kramer EJ (1983) Adv Polym Sci 52/53:1–56

    Article  Google Scholar 

  22. Bucknall CB, Karpodinis A, Zhang XC (1994) J Mater Sci 29:3377–3383

    Article  CAS  Google Scholar 

  23. Okubo M (1990) Makromol Chem Macromol Symp 35/36:307

    Article  Google Scholar 

  24. Rios L, Hidalgo M, Cavaille JY, Guillot J, Guyot A, Pichot C (1991) Colloid Polym Sci 269:812

    Article  CAS  Google Scholar 

  25. Stutman DR, Klien A, El-Aasser MS, Vanderhoff JW (1985) Ind Eng Chem Perod Res Dev 24:404

    Article  CAS  Google Scholar 

  26. Donald AM, Kramer EJ (1982) J Apply Polym Sci 27:3729

    Article  CAS  Google Scholar 

  27. Bucknall CB, Cote FFP, Partridge IK (1986) J Mater Sci 21:301

    Article  CAS  Google Scholar 

  28. Bucknall CB, Davies P, Partridge IK (1986) J Mater Sci 21:307

    Article  CAS  Google Scholar 

  29. Mirmohseni A, Zavareh S (2010) J Polym Res 17:191

    Article  CAS  Google Scholar 

  30. Mirmohseni A, Zavareh S (2011) J Polym Res 18:509

    Article  CAS  Google Scholar 

  31. Singh H, Gupta NK (2011) J Polym Res 18:1365

    Article  CAS  Google Scholar 

  32. Chiu FC, Lai SM, Li HC, Chen CC (2011) J Polym Res 18:627

    Article  CAS  Google Scholar 

  33. Kramer EJ (1982) Polymer Compatibility and Incompatibility: Principles and Practices MMI Press. Midland, MI, USA

    Google Scholar 

  34. Lauterwasser BD & Kramer EJ (1979) Phill Mag 39A

  35. Beahan P, Thomas A, Bevis M (1976) J Apply Mater Sci 11:1207–1214

    Article  Google Scholar 

  36. Nielsen LE (1978) Predicting the Properties of Mixture: Mixture rules in Science and Technology. Dekker, New York

    Google Scholar 

  37. Nielsen LE (1974) Particulate filled polymers. In: Mechanical Properties of Polymers and Composites, Marcel Dekker, New York, pp 377–450

  38. Dickie RA (1978) In: Paul DR (ed) Polymer Blends, vol. 2. Academic, New York

    Google Scholar 

  39. Lewis TB, Nielsen LE (1970) J Appl Polym Sci 14:1449

    Article  CAS  Google Scholar 

  40. Vemura S, Takayanagi M (1966) J Apply Polym Sci 10:113

    Article  Google Scholar 

  41. Martino RJ (ed) (1987) Modern Plastics Encyclopedia. McGrawHill Inc., New York, p 609

    Google Scholar 

  42. Kim H, Keskkula H, Paul DR (1991) polymer Vol 32 Number 13

  43. Wu S (1985) Polymer 26:1855

    Article  CAS  Google Scholar 

  44. Wu S (1988) J Apply Polym Sci 35:549

    Article  CAS  Google Scholar 

  45. de Gennes PG (1980) Macromolecules 13:1069

    Article  Google Scholar 

  46. Riatsuo M, Wang T, Kwei TK (1972) Crazing of Polystyrene Containing Two Rubber Balls: A Model for ABS Plastics. J Polym Sci Part A 10:1085–1095

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Razavi Aghjeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehrabi Mazidi, M., Razavi Aghjeh, M.K. & Abbasi, F. Relationship between microscopic deformations and macroscopic mechanical response of SAN/PB-g-SAN blends via interparticle distance concept. J Polym Res 19, 9928 (2012). https://doi.org/10.1007/s10965-012-9928-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-9928-z

Keywords

Navigation