Skip to main content
Log in

Molecular dynamics study of epoxy/clay nanocomposites: rheology and molecular confinement

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

To investigate the effect of nanoparticles on molecular confinement, epoxy/clay nanocomposites in 6 % wt were prepared by low shear mixer and ultrasonication methods. According to the XRD results, high energy sonication can significantly increase the intergallery space compared to that of the low shear mixer and, therefore, provide more interfacial area for polymer-particle interaction. Rheological measurements, including dynamic mechanical moduli, continuous relaxation spectrum and zero-shear viscosity, were carried out in the linear region to reveal the solid-like characteristics induced in the pure epoxy. The longest Rouse relaxation time, which was determined from the value of zero-shear viscosity, was employed to study the segmental friction. It is clear that the chain relaxation process was slowed by the polymer-particle interactions, which created very high monomeric friction. We introduce the ratio of monomeric friction coefficients (ζnanoepoxy) as the strength of immobilization to correlate the increasing elasticity, longer relaxation time and molecular confinement quantitatively. Because more monomers can be immobilized on a clay surface due to their strong affinity, the friction ratio increased to 359.48 for the sonicated sample, whereas weak polymer-particle affinity resulted in much lower growth, with a friction ratio of 2.11 for the low shear mixing method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Macosko CW (1994) Rheology: principles, measurements, and applications. John Wiley & Sons

  2. Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. John Wiley & Sons

  3. Manitiu M, Horsch S, Gulari E, Kannan RM (2009) Role of polymer-clay interactions and nano-clay dispersion on the viscoelastic response of supercritical CO2 dispersed polyvinylmethylether (PVME)-Clay nanocomposites. Polymer 50:3786–3796

    Article  CAS  Google Scholar 

  4. Sarvestani AS (2008) Modeling the solid-like behavior of entangled polymer nanocomposites at low frequency regimes. Eur Polym J 44:263–269

    Article  CAS  Google Scholar 

  5. Fernandez I, Santamaría A, Muñoz ME, Castell P (2007) A rheological analysis of interactions in phenoxy/organoclay nanocomposites. Eur Polym J 43:3171–3176

    Article  CAS  Google Scholar 

  6. Kropka JM, Putz KW, Pryamitsyn V, Ganesan V, Green PF (2007) Origin of dynamical properties in pmma-c60 nanocomposites. Macromol 40:5424–5432

    Article  CAS  Google Scholar 

  7. Pryamitsyn V, Ganesan V (2006) Origins of linear viscoelastic behavior of polymer-nanoparticle composites. Macromol 39:844–856

    Article  CAS  Google Scholar 

  8. Zhao J, Morgan AB, Harris JD (2005) Rheological characterization of polystyrene-clay nanocomposites to compare the degree of exfoliation and dispersion. Polymer 46:8641–8660

    Article  CAS  Google Scholar 

  9. Zhang Q, Archer LA (2002) Poly (ethylene oxide)/silica nanocomposites: structure and rheology. Langmuir 18:10435–10442

    Article  CAS  Google Scholar 

  10. Sureshkumar MS, Filippi S, Polacco G, Kazatchkov I, Stastna J, Zanzotto L (2010) Internal structure and linear viscoelastic properties of EVA/asphalt nanocomposites. Eur Polym J 46:621–633

    Article  CAS  Google Scholar 

  11. Utracki LA (2004) Clay-containing polymeric nanocomposites. RAPRA Technology Ltd., vols. 1 and 2, England

  12. Zeng QH, Yu AB, Lu GQ, Paul DR (2005) Clay-based polymer nanocomposites: research and commercial development. J Nanosci Nanotechnol 5:1574–1592

    Article  CAS  Google Scholar 

  13. Sorrentino A, Tortora M, Vittoria V (2006) Diffusion behavior in polymer-clay nanocomposites. J Polym Sci B Polym Phys 44:265–274

    Article  CAS  Google Scholar 

  14. Reyna-Valencia A, Deyrail Y, Bousmina M (2010) In situ follow-up of the intercalation process in a clay/polymer nanocomposite model system by Rheo-XRD analyses. Macromol 43:354–361

    Article  CAS  Google Scholar 

  15. Owusu-Adom K, Guymon CA (2009) Chemical compatibility and reaction-induced exfoliation in photopolymerizable clay nanocomposites. Macromol 42:180–187

    Article  CAS  Google Scholar 

  16. Greesh N, Hartmann PC, Cloete V, Sanderson RD (2008) Impact of the clay organic modifier on the morphology of polymer-clay nanocomposites prepared by in situ free-radical polymerization in emulsion. J Polym Sci A Polym Chem 46:3619–3628

    Article  CAS  Google Scholar 

  17. Park JH, Jana SC (2003) Mechanism of exfoliation of nanoclay particles in epoxy-clay nanocomposites. Macromol 36:2758–2768

    Article  CAS  Google Scholar 

  18. John B, Nair CPR, Ninan KN (2010) Effect of nanoclay on the mechanical, dynamic mechanical and thermal properties of cyanate ester syntactic foams. Mater Sci Eng, A 527:5435–5443

    Article  Google Scholar 

  19. Schwartz GA, Bergman R, Swenson J (2004) Relaxation dynamics of a polymer in a 2D confinement. J Chem Phys 120:5736–5744

    Article  CAS  Google Scholar 

  20. Kumar KD, Tsou AH, Bhowmick AK (2010) Unique tackification behavior of needle-like sepiolite nanoclay in brominated isobutylene-co-p-methylstyrene (bims) rubber. Macromol 43:4184–4193

    Article  CAS  Google Scholar 

  21. Gordon GV, Schmidt RG, Quintero M, Benton NJ, Cosgrove T, Krukonis VJ, Williams K, Wetmore PM (2010) Impact of polymer molecular weight on the dynamics of poly(dimethylsiloxane)-polysilicate nanocomposites. Macromol 43:10132–10142

    Article  CAS  Google Scholar 

  22. Krutyeva M, Martin J, Arbe A, Colmenero J, Mijangos C, Schneider GJ, Unruh T, Su Y, Richter D (2009) Neutron scattering study of the dynamics of a polymer melt under nanoscopic confinement. J Chem Phys 131:174901–174911

    Article  Google Scholar 

  23. Li Y, Wei D, Han CC, Liao Q (2007) Dynamics of polymer melts confined by smooth walls: crossover from nonentangled region to entangled region. J Chem Phys 126:204907–204913

    Article  Google Scholar 

  24. Swain SK, Isayev AI (2007) Effect of ultrasound on HDPE/clay nanocomposites: rheology, structure and properties. Polymer 48:281–289

    Article  CAS  Google Scholar 

  25. Smith JS, Bedrov D, Smith GD (2003) A molecular dynamics simulation study of nanoparticle interactions in a model polymer-nanoparticle composite. Compos Sci Technol 63:1599–1605

    Article  CAS  Google Scholar 

  26. Kabanemi KK, Hétu JF (2010) A reptation-based model to the dynamics and rheology of linear entangled polymers reinforced with nanoscale rigid particles. J Non-Newtonian Fluid Mech 165:866–878

    Article  CAS  Google Scholar 

  27. Liu J, Cao D, Zhang L (2008) Molecular dynamics study on nanoparticle diffusion in polymer melts: a test of the Stokes-Einstein Law. J Phys Chem 112:6653–6661

    Article  CAS  Google Scholar 

  28. Hu X, ZhangW Si M, Gelfer M, Hsiao B, Rafailovich M, Sokolov J, Zaitsev V, Schwarz S (2003) Dynamics of polymers in organosilicate nanocomposites. Macromol 36:823–829

    Article  CAS  Google Scholar 

  29. Cole DH, Shull KR, Baldo P, Rehn L (1999) Dynamic properties of a model polymer/metal nanocomposite: gold particles in poly (tert-butyl acrylate). Macromol 32:771–779

    Article  CAS  Google Scholar 

  30. Lee KM, Han CD (2003) Effect of hydrogen bonding on the rheology of polycarbonate/organoclay nanocomposites. Polymer 44:4573–4588

    Article  CAS  Google Scholar 

  31. Liu S, Guo D, Xie G (2010) Water film confined in a nanoscale gap: surface polarity and hydration effects. J Appl Phys 108:084315–084321

    Article  Google Scholar 

  32. Kalfus J, Jancar J (2007) Relaxation processes in pvac-ha nanocomposites. J Polym Sci B Polym Phys 45:1380–1388

    Article  CAS  Google Scholar 

  33. Nguyen QT, Baird DG (2007) An improved technique for exfoliating and dispersing nanoclay particles into polymer matrices using supercritical carbon dioxide. Polymer 48:6923–6933

    Article  CAS  Google Scholar 

  34. Nama S, Leisen J, Breedveld V, Beckham HW (2008) Dynamics of unentangled cyclic and linear poly (oxyethylene) melts. Polymer 49:5467–5473

    Article  Google Scholar 

  35. Malwitz MM, Butler PD, Porcar L, Angelette DP, Schmidt G (2004) Orientation and relaxation of polymer-clay solutions studied by rheology and small-angle neutron scattering. J Polym Sci B Polym Phys 42:3102–3112

    Article  CAS  Google Scholar 

  36. Sarvestani AS, Jabbari E (2008) A model for the viscoelastic behavior of nanofilled hydrogel composites under oscillatory shear loading. Polym Compos 326–336

  37. Ma H, Tong L, Xu Z, Fang Z (2007) Clay network in abs-graft-mah nanocomposites: rheology and flammability. Polym Degrad Stab 92:1439–1445

    Article  CAS  Google Scholar 

  38. Wang K, Liang S, Deng J, Yang H, Zhang Q, Fu Q, Dong X, Wang D, Han CC (2006) The role of clay network on macromolecular chain mobility and relaxation in isotactic polypropylene/organoclay nanocomposites. Polymer 47:7131–7144

    Article  CAS  Google Scholar 

  39. Gibson SL, Kim H, Schmidt G, Han CC, Hobbie EK (2004) Shear-induced structure in polymer-clay nanocomposites solutions. J Coll Inter Sci 274:515–525

    Article  Google Scholar 

  40. Wu D, Zhoua C, Fan X, Mao D, Bian Z (2005) Linear rheological behavior and thermal stability of poly (butylenes terephthalate)/epoxy/clay ternary nanocomposites. Polym Degrad Stab 87:511–519

    Article  CAS  Google Scholar 

  41. Koo CM, Kim MJ, Choi MH, Kim SO, Chung IJ (2003) Mechanical and rheological properties of the maleated polypropylene-layered silicate nanocomposites with different morphology. J Appl Polym Sci 88:1526–1535

    Article  CAS  Google Scholar 

  42. Lim SK, Hong EP, Song YH, Park BJ, Choi HJ, Chin IJ (2010) Preparation and interaction characteristics of exfoliated abs/organoclay nanocomposite. Polym Eng Sci 504–512

  43. Ren J, Silva AS, Krishnamoorti R (2000) Linear viscoelasticity of disordered polystyrene-polyisoprene block copolymer based layered-silicate nanocomposites. Macromol 33:3739–3746

    Article  CAS  Google Scholar 

  44. Ghelichi M, Taheri Qazvini N, Jafari SH, Khonakdar HA, Reuter U (2012) Nanoclay dispersion in a miscible blend: an assessment through rheological analysis. J Polym Res 19:9830

    Article  Google Scholar 

  45. As’habi L, Jafari SH, Khonakdar HA, Baghaei B (2011) Morphological, rheological and thermal studies in melt processed compatibilized PA6/ABS/clay nanocomposites. J Polym Res 18:197–205

    Article  Google Scholar 

  46. Goodarzi V, Jafari SH, Khonakdar HA, Seyfi J (2011) Morphology, rheology and dynamic mechanical properties of PP/EVA/clay nanocomposites. J Polym Res 18:1829–1839

    Article  CAS  Google Scholar 

  47. Kamoun EA, Menzel H (2012) HES-HEMA nanocomposite polymer hydrogels: swelling behavior and characterization. J Polym Res 19:9851–9864

    Article  Google Scholar 

  48. Garg P, Singh BP, Kumar G, Gupta T, Pandey I, Seth RK, Tandon RP, Mathur RB (2011) Effect of dispersion conditions on the mechanical properties of multi-walled carbon nanotubes based epoxy resin composites. J Polym Res 18:1397–1407

    Article  CAS  Google Scholar 

  49. Mirmohseni A, Zavareh S (2010) Epoxy/acrylonitrile-butadiene-styrene copolymer/clay ternary nanocomposite as impact toughened epoxy. J Polym Res 17:191–201

    Article  CAS  Google Scholar 

  50. Mirmohseni A, Zavareh S (2011) Modeling and optimization of a new impact-toughened epoxy nanocomposite using response surface methodology. J Polym Res 18:509–517

    Article  CAS  Google Scholar 

  51. Wagener R, Reisinger TJG (2003) A rheological method to compare the degree of exfoliation on nanocomposites. Polymer 44:7513–7518

    Article  CAS  Google Scholar 

  52. Ceccia S, Turcato EA, Maffettone PL, Bongiovanni R (2008) Nanocomposite uv-cured coatings: organoclay intercalation by an epoxy resin. Prog Org Coat 63:110–115

    Article  CAS  Google Scholar 

  53. Ngo TD, Ton-That MT, Hoa SV, Cole KC (2009) Preparation and properties of epoxy nanocomposites. I. The effect of premixing on dispersion of organoclay. Polym Eng Sci 666–672

  54. Yasmin A, Abot JL, Daniel IM (2003) Processing of clay/epoxy nanocomposites by shear mixing. Scr Mater 49:81–86

    Article  CAS  Google Scholar 

  55. Wang J, Qin S (2007) Study on the thermal and mechanical properties of epoxy–nanoclay composites: the effect of ultrasonic stirring time. Mater Lett 61:4222–4224

    Article  CAS  Google Scholar 

  56. Sun L, Boo WJ, Liu J, Tien CW, Sue HJ, Marks MJ, Pham H (2007) Preparation of intercalating agent-free epoxy/clay nanocomposites. Polym Eng Sci 1708–1714

  57. Wu D, Wu L, Zhang M, Wu L (2007) Effect of epoxy resin on rheology of polycarbonate/clay nanocomposites. Eur Polym J 43:1635–1644

    Article  CAS  Google Scholar 

  58. Gintert MJG, Jana SC, Miller SG (2007) A novel strategy for nanoclay exfoliation in thermoset polyimide nanocomposite systems. Polymer 48:4166–4173

    Article  CAS  Google Scholar 

  59. Dean K, Krstina J, Tian W, Varley RJ (2007) Effect of ultrasonic dispersion methods on thermal and mechanical properties of organoclay epoxy nanocomposites. Macromol Mater Eng 292:415–427

    Article  CAS  Google Scholar 

  60. Lam CK, Lau KT, Cheung HY, Ling HY (2005) Effect of ultrasound sonication in nanoclay clusters of nanoclay/epoxy composites. Mater Lett 59:1369–1372

    Article  CAS  Google Scholar 

  61. McIntyre S, Kaltzakorta I, Liggat JJ, Pethrick RA, Rhoney I (2005) Influence of the epoxy structure on the physical properties of epoxy resin nanocomposites. Ind Eng Chem Res 44:8573–8579

    Article  CAS  Google Scholar 

  62. Pokrovskii VN (2006) A justification of the reptation-tube dynamics of a linear macromolecule in the mesoscopic approach. Physica A 366:88–106

    Article  CAS  Google Scholar 

  63. Doi M, Edwards SF (1986) The theory of polymer dynamics. Clarendon, Oxford

    Google Scholar 

  64. Rahalkar RR (1990) Monomeric friction coefficient of a styrene butadiene copolyrner. Polymer 31:1028–1031

    Article  CAS  Google Scholar 

  65. Roovers J (1985) Properties of the plateau zone of starbranched polybutadienes and polystyrenes. Polymer 26:1091–1095

    Article  CAS  Google Scholar 

  66. Osaki K, Inoue T, Uematsu T, Yamashita Y (2001) Evaluation methods of the longest rouse relaxation time of an entangled polymer in a semidilute solution. J Polym Sci B Polym Phys 39:1704–1712

    Article  CAS  Google Scholar 

  67. Brodeck M, Alvarez F, Moreno AJ, Colmenero J, Richter D (2010) Chain motion in nonentangled dynamically asymmetric polymer blends: comparison between atomistic simulations of PEO/PMMA and a generic bead-spring model. Macromol 43:3036–3051

    Article  CAS  Google Scholar 

  68. Khatri BS, McLeish TCB (2007) Rouse model with internal friction: a coarse grained framework for single biopolymer dynamics. Macromol 40:6770–6777

    Article  CAS  Google Scholar 

  69. Zheng X, Sauer BB, Alsten JGV, Schwarz SA, Rafailovich MH, Sokolov J, Rubinstein M (1995) Reptation dynamics of a polymer melt near an attractive solid interface. Phys Rev Lett 24:407–410

    Article  Google Scholar 

  70. Niedzwiedz K, Wischnewski A, Pyckhout-Hintzen W, Allgaier J, Richter D, Faraone D (2008) Chain dynamics and viscoelastic properties of poly(ethylene oxide). Macromol 41:4866–4872

    Article  CAS  Google Scholar 

  71. Inoue T, Uematsu T, Yamashita Y, Osaki K (2002) Significance of the longest rouse relaxation time in the stress relaxation process at large deformation of entangled polymer solutions. Macromol 35:4718–4724

    Article  CAS  Google Scholar 

  72. Roland CM, Archer LA, Mott PH, Sanchez-Reyes J (2004) Determining rouse relaxation times from the dynamic modulus of entangled polymers. J Rheol 48:395–403

    Article  CAS  Google Scholar 

  73. Kausika R, Fatkullin N, Hqsing N, Kimmich R (2007) Investigations of polymer dynamics in nanoporous media by field cycling NMR relaxometry and the dipolar correlation effect. Magn Reson Imaging 25:489–492

    Article  Google Scholar 

  74. Termonia Y (2010) Chain confinement in polymer nanocomposites and its effect on polymer bulk properties. J Polym Sci B Polym Phys 48:687–692

    Article  CAS  Google Scholar 

  75. Tuteja A, Mackay ME (2005) Effect of ideal, organic nanoparticles on the flow properties of linear polymers: non-einstein-like behavior. Macromol 38:8000–8011

    Article  CAS  Google Scholar 

  76. Shie SH, Hua CC (2010) Nonlinear Rouse-chain relaxations in obstacle media. J Polym Res 17:877–890

    Article  CAS  Google Scholar 

  77. Wu J, Huang G, Wang X, He X, Lei H (2011) Molecular dynamics in chlorinated butyl rubber containing organophilic montmorillonite nanoparticles. J Polym Res 18:2213–2220

    Article  CAS  Google Scholar 

  78. Yousefi AA, Ait-Kadi A, Roy C (1998) Effect of elastomeric and plastomeric tougheners on different properties of recycled polyethylene. Adv Polym Technol 17:127–143

    Article  CAS  Google Scholar 

  79. Sodeifian GH, Haghtalab A (2004) Discrete relaxation spectrum and K-BKZ constitutive equation for PVC, NBR and their blends. Appl Rheol 14:180–189

    CAS  Google Scholar 

  80. Haghtalab A, Sodeifian GH (2002) Determination of the discrete relaxation spectrum for polybutadiene and polystyrene by a non-linear regression method. Iran Polym J 11:107–113

    CAS  Google Scholar 

  81. Sodeifian GH (2011) Non-linear rheology of polymer melts: constitutive equations, rheological properties of polymer blends, shear flow, sliding plate rheometers. LAP LAMBERT Academic Publishing, Germany

    Google Scholar 

  82. Castel CD, Bianchi O, Oviedo MAS, Liberman SA, Mauler RS, Oliveira RVB (2009) The influence of interfacial agents on the morphology and viscoelasticity of PP/MMT nanocomposites. Mater Sci Eng 29:602–606

    Article  Google Scholar 

  83. Li J, Zhou CX, Wang G (2003) Study on rheological behavior of polypropylene/clay nanocomposites. J Appl Polym Sci 89:3609–3616

    Article  CAS  Google Scholar 

  84. Shen L, Lin Y, Du Q, Zhong W, Yang Y (2005) Preparation and rheology of polyamide-6/attapulgite nanocomposites and studies on their percolated structure. Polymer 46:5758–5766

    Article  CAS  Google Scholar 

  85. Vermogen A, Masenelli-Varlot K, Séguéla R (2005) Evaluation of the structure and dispersion in polymer-layered silicate nanocomposites. Macromol 38:9661–9669

    Article  CAS  Google Scholar 

  86. Landrya V, Riedl B, Blanchet P (2008) Nanoclay dispersion effects on UV coatings curing. Prog Organ Coat 62:400–408

    Article  Google Scholar 

  87. Knauert ST, Douglas JF, Starr FW (2007) The effect of nanoparticle shape on polymer-nanocomposite rheology and tensile strength. J Polym Sci B Polym Phys 45:1882–1897

    Article  CAS  Google Scholar 

  88. Sarvestani AS, Jabbari E (2007) Modeling the viscoelastic response of suspension of particles in polymer solution: the effect of polymer-particle interactions. Macromol Theory Simul 16:378–385

    Article  CAS  Google Scholar 

  89. Nedelcu S, Sommer JU (2009) Single chain dynamics in polymer networks: a Monte Carlo study. J Chem Phys 130:204902–204911

    Article  CAS  Google Scholar 

  90. Lee KM, Han CD (2003) Rheology of organoclay nanocomposites: effects of polymer matrix/organoclay compatibility and the gallery distance of organoclay. Macromol 36:7165–7178

    Article  CAS  Google Scholar 

  91. Borse NK, Kama MR (2009) Estimation of stresses required for exfoliation of clay particles in polymer nanocomposites. Polym Eng Sci 641–650

  92. Berta M, Saiani A, Lindsay C, Gunaratne R (2009) Effect of clay dispersion on the rheological properties and flammability of polyurethane-clay nanocomposite elastomers. J Appl Polym Sci 112:2847–2853

    Article  CAS  Google Scholar 

  93. Harrats C, Groeninckx G (2008) Features, questions and future challenges in layered silicates clay nanocomposites with semicrystalline polymer matrices. Macromol Rapid Commun 29:14–26

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to University of Kashan for supporting this work by Grant No. 158458/1. This work was financially supported by the Iranian Nanotechnology Initiative Council (Grant No. 11815). We wish to thank the Iran Polymer and Petrochemical Institute (IPPI) and the Institute for Color Science and Technology (ICST) for conducting the rheology and morphological measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamhossein Sodeifian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sodeifian, G., Nikooamal, H.R. & Yousefi, A.A. Molecular dynamics study of epoxy/clay nanocomposites: rheology and molecular confinement. J Polym Res 19, 9897 (2012). https://doi.org/10.1007/s10965-012-9897-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-9897-2

Keywords

Navigation