Skip to main content

Advertisement

Log in

The sorption behaviors in PLLA-CO2 system and its effect on foam morphology

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The sorption behavior, physical properties, and foam morphologies in poly(L-lactic acid) (PLLA)-CO2 system were studied in this paper. The solubility and diffusion coefficient of CO2 in PLLA in the range of 0 °C to 45 °C and pressure up to 5.5 MPa were investigated. The diffusion coefficients were analyzed to determine the plasticization glass transition temperature (T g ) of the PLLA-CO2 systems. The data of T g s of PLLA at various CO2 pressures demonstrated that PLLA-CO2 system exhibited a retrograde vitrification behavior, which has never been reported on semi-crystalline polymer-gas system by systematic measurement of solubility data. The sorption curves of PLLA at certain temperatures and pressures exhibited a characteristic keen which indicated the rejection of CO2 from the polymer matrix due to CO2-induced crystallization. The fundamental understanding of PLLA-CO2 interactions was utilized to control the CO2 solubility and crystallinity in PLLA thus the physical properties, in order to develop various unique foam structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mooney DJ, Baldwin DF, Suh NP, Vacanti LP, Langer R (1996) Novel approach to fabricate porous sponges of poly(D, L-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials 17:1417–1422

    Article  CAS  Google Scholar 

  2. Lips PAM, Velthoen IW, Dijkstra PJ, Wessling M, Feijen J (2005) Gas foaming of segmented poly(ester amide) films. Polymer 46:9396–9403

    Article  CAS  Google Scholar 

  3. Liao X, Nawaby AV, Whitfield P, Day M, Champagne M, Denault J (2006) Layered open pore poly(L-lactic acid) nanomorphology. Biomacromolecules 7:2937–2941

    Article  CAS  Google Scholar 

  4. Liao X, Nawaby AV, Whitfield PS (2010) Carbon dioxide-induced crystallization in poly(L-lactic acid) and its effect on foam morphologies. Polym Int 59:1709–1718

    Article  CAS  Google Scholar 

  5. Jenkins MJ, Harrison KL, Silva MMCG, Whitaker MJ, Shakesheff KM, Howdle SM (2006) Characterisation of microcellular foams produced from semi-crystalline PCL using supercritical carbon dioxide. Eur Polym J 42:3145–3151

    Article  CAS  Google Scholar 

  6. Nawaby AV, Farah AA, Liao X, Pietro WJ, Day M (2005) Biodegradable open cell foams of telechelic poly(epsilon-caprolactone) macroligand with ruthenium(II) chromophoric subunits via sub-critical CO2 processing. Biomacromolecules 6:2458–2461

    Article  CAS  Google Scholar 

  7. Gualandi C, White LJ, Chen L, Gross RA, Shakesheff KM, Howdle SM, Scandola M (2010) Scaffold for tissue engineering fabricated by non-isothermal supercritical carbon dioxide foaming of a highly crystalline polyester. Acta Biomater 6:130–136

    Article  CAS  Google Scholar 

  8. Chen HC, Tsai CH, Yang MC (2011) Mechanical properties and biocompatibility of electrospun polylactide/poly(vinylidene fluoride) mats. J Polym Res 18:319–327

    Article  CAS  Google Scholar 

  9. Li HB, Huneault MA (2007) Effect of nucleation and plasticization on the crystallization of poly(lactic acid). Polymer 48:6855–6866

    Article  CAS  Google Scholar 

  10. Schultze JD, Engelmann IAD, Boehning M, Springer J (1991) Influence of sorbed carbon dioxide on transition temperatures of poly(p-phenylene sulphide). Polym Adv Tech 2:123–126

    Article  CAS  Google Scholar 

  11. Handa YP, Zhang ZY, Roovers L (2001) Compressed-gas-induced crystallization in tert-butyl poly(ether ether ketone). J Polym Sci, Polym Phys 39:1505–1512

    Article  CAS  Google Scholar 

  12. Zhang ZY, Handa YP (1998) An in situ study of plasticization of polymers by high-pressure gases. J Polym Sci, Polym Phys 36:977–982

    Article  CAS  Google Scholar 

  13. Handa YP, Zhang ZY, Wong B (1997) Effect of compressed CO2 on phase transitions and polymorphism in syndiotactic polystyren. Macromolecules 30:8499–8504

    Article  CAS  Google Scholar 

  14. Sato Y, Fujiwara K, Takikawa T, Sumarno TS, Masuoka H (1999) Solubilities and diffusion coefficients of carbon dioxide and nitrogen in polypropylene, high-density polyethylene, and polystyrene under high pressures and temperatures. Fluid Phase Equilibr 162:261–276

    Article  CAS  Google Scholar 

  15. Wissinger RG, Paulaitis ME (1991) Glass transitions in polymer/CO2 mixtures at elevated pressures. J Polym Sci, Polym Phys 29:631–633

    Article  CAS  Google Scholar 

  16. Condo PD, Sanchez IC, Panayiotou CG, Johnston KP (1992) Glass transition behavior including retrograde vitrification of polymers with compressed fluid diluents. Macromolecules 25:6119–6127

    Article  CAS  Google Scholar 

  17. Kikic J, Vecchione F, Alessi P, Cortesi A, Eva F (2003) Polymer plasticization using supercritical carbon dioxide: experiment and modelling. Ind Eng Chem Res 42:3022–3029

    Article  CAS  Google Scholar 

  18. Handa YP, Zhang Z, Wong B (2001) Solubility, diffusivity, and retrograde vitrification in PMMA-CO2, and development of sub-micron cellular structures. Cell Polym 20:1–16

    Google Scholar 

  19. Handa YP, Zhang ZY (2000) A new technique for measuring retrograde vitrification in polymer-gas systems and for making ultramicrocellular foams from the retrograde phase. J Polym Sci, Polym Phys 38:716–725

    Article  CAS  Google Scholar 

  20. Nawaby AV, Handa YP, Liao X, Yoshitaka Y, Tomohiro M (2007) Polymer-CO2 systems exhibiting retrograde behavior and formation of nanofoams. Polym Int 56:67–73

    Article  CAS  Google Scholar 

  21. Sato Y, Yamane M, Sorakubo A, Takishima S, Masuoka H, Yamamoto H, Takasugi M (2000) In Solubility and diffusion coefficient of carbon dioxide in polylactide. In The 21st Japan Symposium on Thermophysical Properties Nagoya, Japan, 196–198

  22. Takada M, Hasegawa S, Ohshima M (2004) Crystallization kinetics of poly(L-lactide) in contact with pressurized CO2. Polym Eng Sci 44:186–196

    Article  CAS  Google Scholar 

  23. Wong B, Zhang ZY, Handa YP (1998) High-precision gravimetric technique for determining the solubility and diffusivity of gases in polymers. J Polym Sci, Polym Phys 36:2025–2032

    Article  CAS  Google Scholar 

  24. He BB (2009) Two-dimensional X-ray diffraction. Wiley, New Jersey

    Book  Google Scholar 

  25. Baldwin DF, Park CB, Suh NP (1996) A microcellular processing study of poly(ethylene terephthalate) in the amorphous and semicrystalline states. 1. Microcell nucleation. Polym Eng Sci 36:1437–1445

    Article  CAS  Google Scholar 

  26. Baldwin DF, Park CB, Suh NP (1996) A microcellular processing study of poly(ethylene terephthalate) in the amorphous and semicrystalline states. 2. Cell growth and process design. Polym Eng Sci 36:1446–1453

    Article  CAS  Google Scholar 

  27. Kazarian SG, Vincent MF, Bright FV, Liotta CL, Eckert CA (1996) Specific intermolecular interaction of carbon dioxide with polymers. J Am Chem Soc 118:1729–1736

    Article  CAS  Google Scholar 

  28. Nalawade SP, Picchioni F, Marsman JH, Janssen LPBM (2006) The FT-IR studies of the interactions of CO2 and polymers having different chain groups. J Supercrit Fluids 36:236–244

    Article  CAS  Google Scholar 

  29. Balik CM (1996) On the extraction of diffusion coefficients from gravimetric data for sorption of small molecules by polymer thin films. Macromolecules 29:3025–3029

    Article  CAS  Google Scholar 

  30. Kamiya Y, Mizoguti K, Hirose T, Naito Y (1989) Sorption and dilation in poly(ethyl methacrylate)–carbon dioxide system. J Polym Sci, Polym Phys 27:879–892

    Article  CAS  Google Scholar 

  31. Parker K, Garancher J, Shah S, Fernyhough A (2011) Expanded polylactic acid –an eco-friendly alternative to polystyrene foam. J Cell Plast 47:233–243

    Article  CAS  Google Scholar 

  32. Zuidema H (2000) Flow induced crystallization of polymers, application to injection moulding. Technische Universiteit Eindhoven, Eindhoven

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Liao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, X., Nawaby, A.V. The sorption behaviors in PLLA-CO2 system and its effect on foam morphology. J Polym Res 19, 9827 (2012). https://doi.org/10.1007/s10965-012-9827-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-9827-3

Keywords

Navigation