Skip to main content
Log in

Structure-property correlation of bromine substitution in polyimides

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The influence of bromine substitution in polyimides onto physical properties is systematically investigated for the first time. A series of comparable polyimides with and without bromine substituents was synthesized and characterized. Thus, different aromatic or aliphatic diamines containing various flexible linkages were reacted with two analogous dianhydrides, from which one contains tetrabromo substituted phenylene rings. The structure of monomers and polymers was confirmed by infrared spectroscopy and proton nuclear magnetic resonance. The measurements showed that the bromine substitution did not significantly affect the thermal and dielectric properties of the corresponding polymers when compared to related structures. All polyimides exhibited enhanced solubility in polar and in less polar solvents. The introduction of bromine substituents led to the increase of glass transition temperature, being in the range of 147–274 °C for polymers containing only aromatic rings, and in the domain of 72–110 °C for polymers containing aliphatic segments. Also, by the introduction of bromine units thermal stability slightly decreased for the corresponding polymers, with initial decomposition temperature being in the range of 410–510 °C for polymers having only aromatic rings, and in the domain of 355–400 °C for polymers having aliphatic segments. The values obtained for dielectric constant, dielectric loss and activation energy of sub-glass relaxations for the polymer containing bromine units are slightly higher than those of polyimides without substituted phenylene rings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hergenrother PM (2003) The use, design, synthesis, and properties of high performance/high temperature polymers: an overview. High Perform Polym 15:3–45

    CAS  Google Scholar 

  2. Dingemans TJ, Mendes E, Hinkley JJ, Weiser E, Sand St Clair TL (2008) Poly(ether-imide)s from diamines with para-, meta-, and ortho-arylene substitutions: synthesis, characterization, and liquid crystalline properties. Macromolecules 41:2474–2483

    Article  CAS  Google Scholar 

  3. Damaceanu MD, Bacosca I, Bruma M, Robison J, Rusanov AL (2009) Heterocyclic polyimides containing siloxane groups in the main chain. Polym Int 58:1041–1050

    Article  CAS  Google Scholar 

  4. Bacosca I, Hamciuc E, Bruma M, Ronova IA (2010) Study of aromatic polyimides containing cyano groups. High Perform Polym 22:703–714

    Article  CAS  Google Scholar 

  5. Chen JC, Liu YT, Leu CM, Liao HY, Lee WC, Lee TM (2010) Synthesis and properties of organosoluble polyimides derived from 2,2′-dibromo- and 2,2′,6,6′-tetrabromo-4,4′-oxydianilines. J Appl Polym Sci 117:1144–1155

    Article  CAS  Google Scholar 

  6. Shen J, Zhang Y, Huang M, Wang W, Xu Z, Yeung KWK, Yi C, Xu M (2012) Study on preparation and properties of novel reactive phenolic hydroxyl-containing polyimides. J Polym Res 19:9857–9866

    Article  Google Scholar 

  7. Bacosca I, Hamciuc E, Cristea M, Lisa G, Bruma M (2012) Poly(ether imide)s containing cyano substituents and thin films made from them. J Appl Polym Sci 124:1956–1966

    Article  CAS  Google Scholar 

  8. Luo L, Pang Y, Jiang X, Wang X, Zhang P, Chen Y, Peng C, Liu X (2012) Preparation and characterization of novel polyimide films containing amide groups. J Polym Res 19:9783–9790

    Article  Google Scholar 

  9. Gawrys P, Djurado D, Rimarcik J, Kornet A, Boudinet D, Verilhac JM, Lukes V, Wielgus I, Zagorska M, Pron A (2010) Effect of N-substituents on redox, optical, and electronic properties of naphthalene bisimides used for field-effect transistors fabrication. J Phys Chem B 114:1803–1809

    Article  CAS  Google Scholar 

  10. Grabiec E, Schab-Balcerzak E, Wolinska-Grabczyk A, Jankowski A, Jarzabek B, Kozuch-Krawczyk J, Kurcok M (2011) Physical, optical and gas transport properties of new processable polyimides and poly(amideimide)s obtained from 4,4′-[oxybis(4,1- phenylenethio)]dianiline and aromatic dianhydrides. Polym J 43:621–629

    Article  CAS  Google Scholar 

  11. Fang B, Pan K, Meng Q, Cao B (2012) Preparation and properties of polyimide solvent-resistant nanofiltration membrane obtained by a two-step method. Polym Int 61:111–117

    Article  CAS  Google Scholar 

  12. Lin CH, Chang SL, Fang YT, Chou MH (2012) Electron-withdrawing/donating effects of substituents on the preparation of phosphinated 4,4′-diaminodiphenyl-methane for soluble, anti-oxidative, and high-Tg polyimides. High Perform Polym 24:140–149

    Article  CAS  Google Scholar 

  13. Bruma M, Mercer F, Schulz B, Dietel R, Fitch J, Cassidy P (1994) Study of the crosslinking process in fluorinated poly(imide-amide)s containing pendant cyano groups. High Perform Polym 6:183–191

    Article  CAS  Google Scholar 

  14. Huang SJ, Hoyt AE (1995) The synthesis of soluble polyimides. Trends Polym Sci 3:262–271

    CAS  Google Scholar 

  15. Hu ZQ, Wang MH, Li SJ, Liu XY, Wu JH (2005) Ortho alkyl substituents effect on solubility and thermal properties of fluorenyl cardo polyimides. Polymer 46:5278–5283

    Article  CAS  Google Scholar 

  16. Ghosh A, Banerjee S (2008) Structure-property co-relationship of fluorinated poly(imide-siloxane)s. Polym Adv Technol 19:1486–1494

    CAS  Google Scholar 

  17. Hamciuc C, Hamciuc E, Cazacu M, Okrasa L (2008) Poly(ether-imide) and poly(ether-imide)-polydimethylsiloxane containing isopropylidene groups. Polym Bull 59:825–832

    Article  CAS  Google Scholar 

  18. Li F, Fang S, Ge JJ, Honigfort PS, Chen JC, Harris FW, Cheng SZD (1999) Diamine architecture effects on glass transitions, relaxation processes and other material properties in organo-soluble aromatic polyimide films. Polymer 40:4571–4583

    Article  CAS  Google Scholar 

  19. Matsuura T, Hasuda Y, Nishi S, Yamada N (1991) Polyimide derived from 2,2′-bis (trifluoromethyl)-4,4′-diaminobiphenyl. 1. Synthesis and characterization of polyimides prepared with 2,2′-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride or pyromellitic dianhydride. Macromolecules 24:5001–5005

    Article  CAS  Google Scholar 

  20. Chou CH, Reddy DS, Shu CF (2002) Synthesis and characterization of spirobifluorene-based polyimides. J Polym Sci A Polym Chem 40:3615–3621

    Article  CAS  Google Scholar 

  21. Hamciuc C, Vlad-Bubulac T, Petreus O, Lisa G (2008) Synthesis and characterization of new aromatic polyesters and poly(ester imide)s containing phosphorous cyclic bulky groups. Polym Bull 60:657–664

    Article  CAS  Google Scholar 

  22. de Abajo J, de la Campa JG (1998) In: Kricheldorf HR (ed) Processable aromatic polyimides; vol. I. Springer, Berlin Heidelberg New York

    Google Scholar 

  23. Wang CS, Leu T (2000) Synthesis and characterization of polyimides containing naphthalene pendant group and flexible ether linkages. Polymer 41:3581–3591

    Article  CAS  Google Scholar 

  24. Chern YT, Twu JT, Chen JC (2009) High Tg and high organosolubility of novel polyimides containing twisted structures derived from 4-(4-amino-2-chlorophenyl)-1-(4-aminophenoxy)-2,6-di-tert-butylbenzene. Eur Polym J 45:1127–1138

    Article  CAS  Google Scholar 

  25. McCaig MS, Seo ED, Paul DR (1999) Effects of bromine substitution on the physical and gas transport properties of five series of glassy polymers. Polymer 40:3367–3382

    Article  CAS  Google Scholar 

  26. Maier G (2001) Low dielectric constant polymers for microelectronics. Prog Polym Sci 26:3–65

    Article  CAS  Google Scholar 

  27. Liou GS, Wang JSB, Tseng ST, Tsiang RCC (1999) New organo-soluble aromatic polyimides based on 3,3′,5,5′-tetrabromo-2,2-bis[4-(3,4-dicarboxyphenoxy) phenyl]propane dianhydride and aromatic diamines. J Polym Sci A Polym Chem 37:1673–1680

    Article  CAS  Google Scholar 

  28. Di Marzio EA, Gibb JH (1959) Glass temperature of copolymers. J Polym Sci 40:121–131

    Article  Google Scholar 

  29. Van Krevelen DW (1990) Properties of polymers; chapter 11, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  30. Ree M, Chen KJ, Kirby DP, Katzenellenbogen N, Grischkowsky D (1992) Anisotropic properties of high-temperature polyimide thin films: dielectric and thermal-expansion behaviors. J Appl Phys 72:2014–2022

    Article  CAS  Google Scholar 

  31. Sen S, Boyd RH (2008) Dielectric relaxation in amorphous linear aliphatic copolyesters. Eur Polym J 44:3280–3287

    Article  CAS  Google Scholar 

  32. Vora RH (2010) Designing of molecular architecture, synthesis and properties of the next generation of state-of-the-art high-performance thermoplastic fluoro-poly(ether amide)s, (6F-PEA), fluoro-poly(ether amide-imide)s (6F-PEAI), and their co-polymers. Mat Sci Eng B 168:71–84

    Article  CAS  Google Scholar 

  33. Hamciuc C, Hamciuc E, Ipate AM, Okrasa L (2008) Copoly(1,3,4-oxadiazole-ether)s containing phthalide groups and thin films made therefrom. Polymer 49:681–690

    Article  CAS  Google Scholar 

  34. Fragiadakis D, Logakis E, Pissis P, Kramarenko YV, Shantalii TA, Karpova IL, Dragan KS, Privalko EG, Usenko AA, Privalko VP (2005) Polyimide/silica nanocomposites with low values of dielectric permittivity. J Phys Conf Ser 10:139–142

    Article  CAS  Google Scholar 

  35. Bas C, Tamagna C, Pascal T, Alberola ND (2003) On the dynamic mechanical behavior of polyimides based on aromatic and alicyclic dianhydrides. Polym Eng Sci 43:344–355

    Article  CAS  Google Scholar 

  36. Habas JP, Peyrelasse J, Grenier-Loustalot MF (1996) Rheological study of a high- performance polyimide. Interpretation of the secondary mechanical relaxations of a nadimide crosslinked system. High Perform Polym 8:515–532

    Article  CAS  Google Scholar 

  37. Ngai KL, Paluch M (2004) Classification of secondary relaxation in glass formers based on dynamic properties. J Chem Phys 120:857–873

    Article  CAS  Google Scholar 

  38. Bravard SP, Boyd RH (2003) Dielectric relaxation in amorphous poly(ethylene terephthalate) and poly(ethylene 2,6-naphthalene dicarboxylate) and their copolymers. Macromolecules 36:741–748

    Article  CAS  Google Scholar 

  39. Damaceanu MD, Musteata VE, Cristea M, Bruma M (2010) Viscoelastic and dielectric behavior of thin films made from siloxane-containing poly(oxadiazole-imide)s. Eur Polym J 46:1049–1062

    Article  CAS  Google Scholar 

  40. Lee HT, Chuang KR, Chen SA, Wei PK, Hsu JH, Fann W (1995) Conductivity relaxation of 1-methyl-2-pyrrolidone-plasticized polyaniline film. Macromolecules 28:7645–7652

    Article  CAS  Google Scholar 

  41. Jin W, Boyd RH (2002) Time evolution of dynamic heterogeneity in a polymeric glass: a molecular dynamics simulation study. Polymer 43:503–507

    Article  CAS  Google Scholar 

  42. Jonas A, Legras R (1993) Relation between PEEK semicrystalline morphology and its subglass relaxations and glass transition. Macromolecules 26:813–824

    Article  CAS  Google Scholar 

  43. Qu W, Ko TM, Vora RH, Chung TS (2003) Anisotropic dielectric properties of polyimides consisting of various molar ratios of meta- to para- diamine with trifluoromethyl group. Polym Eng Sci 43:344–355

    Article  Google Scholar 

  44. Comer AC, Kalika DS, Rowe BW, Freeman BD, Paul DR (2009) Dynamic relaxation characteristics of Matrimid polyimide. Polymer 50:891–897

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Union′s Seventh Framework Programme (FP7/2007–2013) under grant agreement n°264115 - STREAM. The authors are grateful to I. Stoica and V. E. Musteata for atomic force microscopy and dielectric spectroscopy measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Bacosca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bacosca, I., Bruma, M., Koepnick, T. et al. Structure-property correlation of bromine substitution in polyimides. J Polym Res 20, 53 (2013). https://doi.org/10.1007/s10965-012-0053-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-0053-9

Keywords

Navigation