Skip to main content

Advertisement

Log in

Polycarbazole and its derivatives: progress, synthesis, and applications

  • Review Article
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

ABSTRACT

Polycarbazole and its derivatives encompass nitrogen-containing aromatic heterocyclic conducting polymers having excellent optoelectronic properties, high charge carrier mobility, and excellent morphological stability, which make them potential candidates in the field of nanodevices, rechargeable batteries and electrochemical transistors. Engrossingly, carbazole moieties can be electropolymerized in two different methods resulting in the formation of poly(2,7-carbazole)s or poly(3,6-carbazole)s derivatives because the 2,7 and 3,6 positions are more active than the others. The fundamental difference between these two polymers is in the bandgap energies and effectual conjugation length. Poly(2,7-carbazole) exhibits more extended conjugation length because of the presence of lower bandgap energy values and the presence of poly para phenylene (PPP) like structure. The pysico-chemical characteristics of the polymers, revamped by employing substituents at various positions and synthetic methods, leading to the generation of highly efficient materials for a wide range of optoelectronic applications. At present, much intrinsically conducting polymers (ICPs) like polythiophene (PT), poly (p-phenylene) (PPP), polypyrrole (PPY), and polyaniline (PANI) have been diligently investigated. Among these carbazole units are more advantageous because of their intriguing properties includes the presence of bridged biphenyl unit providing a material with a lower bandgap, the inexpensive raw material (9H-carbazole), and the natural functionalizing ability of nitrogen atom. The predominant objective of this review is to effectuate a comprehensive study of carbazole based conducting polymers, its derivatives, applications, and various synthesis methods.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

References

  1. Morin J-F, Leclerc M, Adès D, Siove A (2005) Polycarbazoles: 25 Years of Progress. Macromol Rapid Commun 26:761–778. https://doi.org/10.1002/marc.200500096

    Article  CAS  Google Scholar 

  2. Boudreault P-LT, Beaupré S, Leclerc M (2010) Polycarbazoles for plastic electronics. Polym Chem 1:127–136. https://doi.org/10.1039/B9PY00236G

    Article  CAS  Google Scholar 

  3. Haldar I, Biswas M, Nayak A (2012). Preparation and evaluation of microstructure , dielectric and conductivity ( ac / dc ) characteristics of a polyaniline / poly N-vinyl carbazole / Fe 3 O 4 nanocomposite. 1–9. https://doi.org/10.1007/s10965-012-9951-0

  4. Ambrose JF, Nelson RF (1968) Anodic Oxidation Pathways of Carbazoles. J Electrochem Soc 115:1159. https://doi.org/10.1149/1.2410929

    Article  CAS  Google Scholar 

  5. Elkhidr HE, Ertekin Z, Udum YA, Pekmez K (2020) Electrosynthesis and characterizations of electrochromic and soluble polymer films based on N- substituted carbazole derivates. Synth Met 260:116253. https://doi.org/10.1016/j.synthmet.2019.116253

    Article  CAS  Google Scholar 

  6. Madhavan S, Santhanam KSV (1988) Structurally Modified Polymer of Carbazole with Specific Catalysis in Electrooxidation of Organic Molecules. Mol Cryst Liq Cryst Inc Nonlinear Opt 160:111–119. https://doi.org/10.1080/15421408808083006

    Article  Google Scholar 

  7. Wakim S, Aïch B, Tao Y, Leclerc M (2008) Charge Transport, Photovoltaic, and Thermoelectric Properties of Poly(2,7-Carbazole) and Poly(Indolo[3,2- b ]Carbazole) Derivatives. Polym Rev 48:432–462. https://doi.org/10.1080/15583720802231726

    Article  CAS  Google Scholar 

  8. Panigrahy S, Kandasubramanian B (2020) Polymeric thermoelectric PEDOT: PSS & composites: Synthesis, progress, and applications. Eur Polym J 132:109726. https://doi.org/10.1016/j.eurpolymj.2020.109726

    Article  CAS  Google Scholar 

  9. Kumar P, Gore PM, Magisetty R et al (2020) Poly(1,6-heptadiyne)/ABS functionalized microfibers for hydrophobic applications. J Polym Res 27:14. https://doi.org/10.1007/s10965-019-1981-4

    Article  CAS  Google Scholar 

  10. Magisetty R, Kumar P, Kumar V et al (2018) NiFe 2 O 4 /Poly(1,6-heptadiyne) Nanocomposite Energy-Storage Device for Electrical and Electronic Applications. ACS Omega 3:15256–15266. https://doi.org/10.1021/acsomega.8b02306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Magisetty R, Kumar P, Gore PM et al (2019) Electronic properties of Poly(1,6-heptadiynes) electrospun fibrous non-woven mat. Mater Chem Phys 223:343–352. https://doi.org/10.1016/j.matchemphys.2018.11.020

    Article  CAS  Google Scholar 

  12. Magisetty R, Hemanth NR, Kumar P et al (2020) Multifunctional conjugated 1,6-heptadiynes and its derivatives stimulated molecular electronics: Future moletronics. Eur Polym J 124:109467. https://doi.org/10.1016/j.eurpolymj.2019.109467

    Article  CAS  Google Scholar 

  13. Boudreault P-LT, Blouin N, Leclerc M (2008). Poly(2,7-carbazole)s and Related Polymers. pp 99–124

  14. Cherukattu Gopinathapanicker J, Inamdar A, Anand A, et al (2020). Radar Transparent, Impact-Resistant, and High-Temperature Capable Radome Composites Using Polyetherimide-Toughened Cyanate Ester Resins for High-Speed Aircrafts through Resin Film Infusion. Ind Eng Chem Res acs.iecr.9b06439. https://doi.org/10.1021/acs.iecr.9b06439

  15. Jayalakshmi CG, Inamdar A, Anand A, Kandasubramanian B (2018). Polymer matrix composites as broadband radar absorbing structures for stealth aircrafts. J Appl Polym Sci 47241. https://doi.org/10.1002/app.47241

  16. Jimmy J, Kandasubramanian B (2020) Mxene functionalized polymer composites: Synthesis and applications. Eur Polym J 122:109367. https://doi.org/10.1016/j.eurpolymj.2019.109367

    Article  CAS  Google Scholar 

  17. Gautam A, Gore PM, Kandasubramanian B (2020) Nanocluster materials in photosynthetic machines. Chem Eng J 385:123951. https://doi.org/10.1016/j.cej.2019.123951

    Article  Google Scholar 

  18. Gore PM, Kandasubramanian B (2018) Functionalized Aramid Fibers and Composites for Protective Applications: A Review. Ind Eng Chem Res 57:16537–16563. https://doi.org/10.1021/acs.iecr.8b04903

    Article  CAS  Google Scholar 

  19. Jayalakshmi CG, Anand A, Kandasubramanian B, Joshi M (2020). High temperature composite materials for electromagnetic applications through a cost effective manufacturing process; resin film infusion. Mater Today Proc https://doi.org/10.1016/j.matpr.2020.03.804

  20. Joshi A, Bajaj A, Singh R, et al (2013). Graphene nanoribbon-PVA composite as EMI shielding material in the X band. Nanotechnology 24:. https://doi.org/10.1088/0957-4484/24/45/455705

  21. Kandasubramanian B (2018). EMI properties of electroless nickel-coated mica in different polymer matrices. Loughborough University

  22. Hemanth NR, Kandasubramanian B (2019). Recent advances in 2D MXenes for enhanced cation intercalation in energy harvesting Applications: A review. Chem Eng J 123678. https://doi.org/10.1016/j.cej.2019.123678

  23. George SM, Kandasubramanian B (2019). Advancements in MXene-Polymer composites for various biomedical applications. Ceram Int https://doi.org/10.1016/j.ceramint.2019.12.257

  24. Parashar K, Prajapati D, McIntyre R, Kandasubramanian B (2020) Advancements in Biological Neural Interfaces Using Conducting Polymers: A Review. Ind Eng Chem Res 59:9707–9718. https://doi.org/10.1021/acs.iecr.0c00174

    Article  CAS  Google Scholar 

  25. Kandasubramanian B, Gilbert M (2005) An Electroconductive Filler for Shielding Plastics. Macromol Symp 221:185–196. https://doi.org/10.1002/masy.200550319

    Article  CAS  Google Scholar 

  26. Yadav R, Tirumali M, Wang X et al (2020) Polymer composite for antistatic application in aerospace. Def Technol 16:107–118. https://doi.org/10.1016/j.dt.2019.04.008

    Article  Google Scholar 

  27. Tahalyani J, Rahangdale KK, Aepuru R et al (2016) Dielectric investigation of a conducting fibrous nonwoven porous mat fabricated by a one-step facile electrospinning process. RSC Adv 6:36588–36598. https://doi.org/10.1039/c5ra23012h

    Article  CAS  Google Scholar 

  28. Tahalyani J, Rahangdale KK, Balasubramanian K (2016) The dielectric properties and charge transport mechanism of π-conjugated segments decorated with intrinsic conducting polymer. RSC Adv 6:69733–69742. https://doi.org/10.1039/C6RA09554B

    Article  CAS  Google Scholar 

  29. Tahalyani J, Datar S, Balasubramanian K (2018) Investigation of dielectric properties of free standing electrospun nonwoven mat. J Appl Polym Sci 135:46121. https://doi.org/10.1002/app.46121

    Article  CAS  Google Scholar 

  30. Malik A, Magisetty R, Kumar V, et al (2019). Dielectric and conductivity investigation of polycarbonate-copper phthalocyanine electrospun nonwoven fibres for electrical and electronic application. Polym Technol Mater https://doi.org/10.1080/25740881.2019.1625390

  31. Malik A, Kandasubramanian B (2018) Flexible Polymeric Substrates for Electronic Applications. Polym Rev 58:630–667. https://doi.org/10.1080/15583724.2018.1473424

    Article  CAS  Google Scholar 

  32. Prajapati DG, Kandasubramanian B (2019). A review on Polymeric-Based Phase Change Material for Thermo-Regulating Fabric Application. Polym Rev 1–31. https://doi.org/10.1080/15583724.2019.1677709

  33. Prajapati DG, Kandasubramanian B (2019) Progress in the Development of Intrinsically Conducting Polymer Composites as Biosensors. Macromol Chem Phys 220:1800561. https://doi.org/10.1002/macp.201800561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Magisetty R, Shukla A, Kandasubramanian B (2018) Magnetodielectric Microwave Radiation Absorbent Materials and Their Polymer Composites. J Electron Mater 47:6335–6365. https://doi.org/10.1007/s11664-018-6580-3

    Article  CAS  Google Scholar 

  35. Magisetty RP, Shukla A, Kandasubramanian B (2019). Terpolymer (ABS) cermet (Ni-NiFe2O4) hybrid nanocomposite engineered 3D-carbon fabric mat as a X-band electromagnetic interference shielding material. Mater Lett https://doi.org/10.1016/j.matlet.2018.12.023

  36. Magisetty R, Shukla A, Kandasubramanian B (2020) Molecular Dynamic Simulation Constructed Interaction Parameter Investigation between Poly(1,6-heptadiyne) and NiFe2O4 in Nanocomposite. Mater Today Proc 24:1720–1728. https://doi.org/10.1016/j.matpr.2020.03.595

    Article  CAS  Google Scholar 

  37. Revaiah RG, Kotresh TM, Kandasubramanian B (2019) Technical textiles for military applications. J Text Inst:1–36. https://doi.org/10.1080/00405000.2019.1627987

  38. Tahalyani J, Khanale M, Kandasubramanian B (2018). Dielectric Polymeric Compositions for Improved Electrical Properties of Flexible Electronics. In: Handbook of Nanomaterials for Industrial Applications. Elsevier, pp 430–467

  39. Tirumali M, Kandasubramanian B, Kumaraswamy A et al (2018) Fabrication, Physicochemical Characterizations and Electrical Conductivity Studies of Modified Carbon Nanofiber-Reinforced Epoxy Composites: Effect of 1-Butyl-3-Methylimidazolium Tetrafluoroborate Ionic Liquid. Polym-Plast Technol Eng 57:218–228. https://doi.org/10.1080/03602559.2017.1320719

    Article  CAS  Google Scholar 

  40. Bharti M, Singh A, Samanta S, Aswal DK (2018) Conductive polymers for thermoelectric power generation. Prog Mater Sci 93:270–310. https://doi.org/10.1016/j.pmatsci.2017.09.004

    Article  CAS  Google Scholar 

  41. Ates M, Uludag N (2016) Carbazole derivative synthesis and their electropolymerization. J Solid State Electrochem 20:2599–2612. https://doi.org/10.1007/s10008-016-3269-5

    Article  CAS  Google Scholar 

  42. Baycan Koyuncu F, Koyuncu S, Ozdemir E (2011) A new multi-electrochromic 2,7 linked polycarbazole derivative: Effect of the nitro subunit. Org Electron 12:1701–1710. https://doi.org/10.1016/j.orgel.2011.06.023

    Article  CAS  Google Scholar 

  43. Wang K, Zhang T, Hu Y et al (2014) Synthesis and characterization of a novel multicolored electrochromic polymer based on a vinylene-linked EDOT-carbazole monomer. Electrochim Acta 130:46–51. https://doi.org/10.1016/j.electacta.2014.02.153

    Article  CAS  Google Scholar 

  44. Sekar N, Umape PG, Lanke SK (2014) Synthesis of Novel Carbazole Fused Coumarin Derivatives and DFT Approach to Study Their Photophysical Properties. J Fluoresc 24:1503–1518. https://doi.org/10.1007/s10895-014-1436-6

    Article  CAS  PubMed  Google Scholar 

  45. Bashir M, Bano A, Ijaz A, Chaudhary B (2015) Recent Developments and Biological Activities of N-Substituted Carbazole Derivatives: A Review. Molecules 20:13496–13517. https://doi.org/10.3390/molecules200813496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ates M, Uludag N (2010) Synthesis and electropolymerization of 9-(4-vinylbenzyl)-9H-carbazole on carbon fiber microelectrode: Capacitive behavior of poly(9-(4-vinylbenzyl)-9H-carbazole). Fibers Polym 11:331–337. https://doi.org/10.1007/s12221-010-0331-2

    Article  CAS  Google Scholar 

  47. Ates M, Yilmaz K, Shahryari A et al (2008) A Study of the Electrochemical Behavior of Poly [N-Vinyl Carbazole] Formed on Carbon-Fiber Microelectrodes and Its Response to Dopamine. IEEE Sensors J 8:1628–1639. https://doi.org/10.1109/JSEN.2008.929069

    Article  CAS  Google Scholar 

  48. Block H, Cowd MA, Walker SM (1977) Conductivities of poly(N-vinyl carbazoles) containing cation-radicals. Polymer (Guildf) 18:781–785. https://doi.org/10.1016/0032-3861(77)90181-1

    Article  CAS  Google Scholar 

  49. Compton RG, Davis FJ, Grant SC (1986) The anodic oxidation of poly(N-vinylcarbazole) films. J Appl Electrochem 16:239–249. https://doi.org/10.1007/BF01093356

    Article  CAS  Google Scholar 

  50. Ates M, Uludag N (2011) Capacitive behaviors and monomer concentration effects of poly(9-benzyl-9H-carbazole) on carbon fiber microelectrode. Fibers Polym 12:296–302. https://doi.org/10.1007/s12221-011-0296-9

    Article  CAS  Google Scholar 

  51. Donnet J-B, Qin R-Y (1992) Study of carbon fiber surfaces by scanning tunnelling microscopy, part i. carbon fibers from different precursors and after various heat treatment temperatures. Carbon N Y 30:787–796. https://doi.org/10.1016/0008-6223(92)90163-Q

    Article  CAS  Google Scholar 

  52. Ates M, Uludag N, Sarac AS (2011) Synthesis of 2-(9 H -carbazole-9-yl)ethyl methacrylate: Electrochemical impedance spectroscopic study of poly(2-(9 H -carbazole-9-yl)ethyl methacrylate) on carbon fiber. J Appl Polym Sci 121:3475–3482. https://doi.org/10.1002/app.34000

    Article  CAS  Google Scholar 

  53. Ates M, Uludag N (2012) Circuit Model Evaluation of Poly(methyl pyrrole-co-2-(9 H -carbazole-9-yl)ethyl methacrylate) on Carbon Fiber. Polym-Plast Technol Eng 51:493–499. https://doi.org/10.1080/03602559.2011.651245

    Article  CAS  Google Scholar 

  54. Ates M, Uludag N (2013) Synthesis of 6-(3,6-di(thiophene-2-yl)-9H-carbazole-9-yl)-hexanoic acid, alternating copolymer formation, characterization and impedance evaluations. Des Monomers Polym 16:398–406. https://doi.org/10.1080/15685551.2012.747157

    Article  CAS  Google Scholar 

  55. Park J-M, Kim Y-M, Kim K-W, Yoon D-J (2000) Interfacial Aspects of Electrodeposited Carbon Fiber-Reinforced Epoxy Composites Using Monomeric and Polymeric Coupling Agents. J Colloid Interface Sci 231:114–128. https://doi.org/10.1006/jcis.2000.7113

    Article  CAS  PubMed  Google Scholar 

  56. Ates M, Uludag N (2011). Synthesis of 9-(4-nitrophenylsulfonyl)-9H-carbazole: Comparison of an impedance study of poly[9-(4-nitrophenylsulfonyl)-9H-carbazole] on gold and carbon fiber microelectrodes. J Appl Polym Sci n/a-n/a https://doi.org/10.1002/app.35380

  57. Ates M, Uludag N (2015) Poly(9 H -Carbazole-9-Carbothioic Dithioperoxyanhydride) Formation and Capacitor Study. Int J Polym Mater Polym Biomater 64:755–761. https://doi.org/10.1080/00914037.2014.1002133

    Article  CAS  Google Scholar 

  58. Souharce B, Kudla CJ, Forster M, et al (2009). Amorphous Carbazole-based ( Co ) polymers for OFET Application a. 1258–1262. https://doi.org/10.1002/marc.200900214

  59. Waldau D, Methling K, Mikolasch A (2009). Characterization of new oxidation products of 9 H -carbazole and structure related compounds by biphenyl-utilizing bacteria. 1023–1031. https://doi.org/10.1007/s00253-008-1723-8

  60. Kawabata K, Goto H (2010) Electrosynthesis of 2,7-linked polycarbazole derivatives to realize low-bandgap electroactive polymers. Synth Met 160:2290–2298. https://doi.org/10.1016/j.synthmet.2010.08.023

    Article  CAS  Google Scholar 

  61. Negru OI, Grigoras M (2019) Synthesis and properties of copolyarylenes containing indolo[3,2-b]carbazole moieties in the backbone. J Polym Res 26:30. https://doi.org/10.1007/s10965-018-1693-1

    Article  CAS  Google Scholar 

  62. Smith PAS, Brown BB (1951) The Synthesis of Heterocyclic Compounds from Aryl Azides. I. Bromo and Nitro Carbazoles 1. J Am Chem Soc 73:2435–2437. https://doi.org/10.1021/ja01150a008

    Article  CAS  Google Scholar 

  63. Yamato T, Hideshima C, Suehiro K et al (1991) Organic reactions catalyzed by solid superacids. 10. Perfluorinated sulfonic acid resin (Nafion-H) catalyzed ring closure reaction of 2,2’-diaminobiphenyls. A preparative route to carbazoles. J Organomet Chem 56:6248–6250. https://doi.org/10.1021/jo00021a057

    Article  CAS  Google Scholar 

  64. Cadogan JIG, Cameron-Wood M, Mackie RK, Searle RJG (1965). 896. The reactivity of organophosphorus compounds. Part XIX. Reduction of nitro-compounds by triethyl phosphite: a convenient new route to carbazoles, indoles, indazoles, triazoles, and related compounds. J Chem Soc 4831. https://doi.org/10.1039/jr9650004831

  65. Cadogan J (2002) Phosphite-Reduction of Aromatic Nitro-Compounds as a Route to Heterocycles. Synthesis-Stuttgart 1969:11–17. https://doi.org/10.1055/s-1969-34189

    Article  Google Scholar 

  66. Freeman AW, Urvoy M, Criswell ME (2005) Triphenylphosphine-Mediated Reductive Cyclization of 2-Nitrobiphenyls: A Practical and Convenient Synthesis of Carbazoles. J Organomet Chem 70:5014–5019. https://doi.org/10.1021/jo0503299

    Article  CAS  Google Scholar 

  67. Appukkuttan P, Van der Eycken E, Dehaen W (2004) Microwave-Enhanced Cadogan Cyclization: An Easy Access to the 2-Substituted Carbazoles and other Fused Heterocyclic Systems. Synlett 2005:127–133. https://doi.org/10.1055/s-2004-836030

    Article  CAS  Google Scholar 

  68. Morin J-F, Leclerc M (2001) Syntheses of Conjugated Polymers Derived from N -Alkyl-2,7-carbazoles. Macromolecules 34:4680–4682. https://doi.org/10.1021/ma010152u

    Article  CAS  Google Scholar 

  69. Bouchard J, Wakim S, Leclerc M (2004) Synthesis of Diindolocarbazoles by Cadogan Reaction: Route to Ladder Oligo( p -aniline)s. J Organomet Chem 69:5705–5711. https://doi.org/10.1021/jo049419o

    Article  CAS  Google Scholar 

  70. Günes S, Neugebauer H, Sariciftci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107:1324–1338. https://doi.org/10.1021/cr050149z

    Article  CAS  PubMed  Google Scholar 

  71. Brabec CJ, Sariciftci NS, Hummelen JC (2001) Plastic Solar Cells. Adv Funct Mater 11:15–26. https://doi.org/10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A

    Article  CAS  Google Scholar 

  72. Hoppe H, Sariciftci NS (2004) Organic solar cells: An overview. J Mater Res 19:1924–1945. https://doi.org/10.1557/JMR.2004.0252

    Article  CAS  Google Scholar 

  73. Coakley KM, McGehee MD (2004) Conjugated Polymer Photovoltaic Cells. Chem Mater 16:4533–4542. https://doi.org/10.1021/cm049654n

    Article  CAS  Google Scholar 

  74. Zheng C, Tao Y, Cao J-Z et al (2012) The structural, electronic, and optical properties of ladder-type polyheterofluorenes: a theoretical study. J Mol Model 18:4929–4939. https://doi.org/10.1007/s00894-012-1483-3

    Article  CAS  PubMed  Google Scholar 

  75. Zotti G, Schiavon G, Zecchin S et al (2002) Electrochemical, Conductive, and Magnetic Properties of 2,7-Carbazole-Based Conjugated Polymers. Macromolecules 35:2122–2128. https://doi.org/10.1021/ma011311c

    Article  CAS  Google Scholar 

  76. Taylor P, Wakim S. Charge Transport , Photovoltaic , and Thermoelectric Properties of Poly ( 2 , 7 - Carbazole ) and Poly ( Indolo [ 3 , 2 - b ] Carbazole ) Derivatives Charge Transport , Photovoltaic , and

  77. Blouin N, Michaud A, Leclerc M (2007) A Low-Bandgap Poly(2,7-Carbazole) Derivative for Use in High-Performance Solar Cells. Adv Mater 19:2295–2300. https://doi.org/10.1002/adma.200602496

    Article  CAS  Google Scholar 

  78. Svetlichnyi VM, Alexandrova EL, Miagkova LA et al (2010) Photophysical properties of indolo[3,2-b]carbazoles as a promising class of optoelectronic materials. Semiconductors 44:1581–1587. https://doi.org/10.1134/S1063782610120080

    Article  CAS  Google Scholar 

  79. Boudreault P-LT, Wakim S, Blouin N et al (2007) Synthesis, Characterization, and Application of Indolo[3,2- b ]carbazole Semiconductors. J Am Chem Soc 129:9125–9136. https://doi.org/10.1021/ja071923y

    Article  CAS  PubMed  Google Scholar 

  80. Wang Z-S, Koumura N, Cui Y et al (2008) Hexylthiophene-Functionalized Carbazole Dyes for Efficient Molecular Photovoltaics: Tuning of Solar-Cell Performance by Structural Modification. Chem Mater 20:3993–4003. https://doi.org/10.1021/cm8003276

    Article  CAS  Google Scholar 

  81. Zhou E, Cong J, Tajima K, Hashimoto K (2010) Synthesis and Photovoltaic Properties of Donor−Acceptor Copolymers Based on 5,8-Dithien-2-yl-2,3-diphenylquinoxaline. Chem Mater 22:4890–4895. https://doi.org/10.1021/cm101677x

    Article  CAS  Google Scholar 

  82. Curiel D, Más-Montoya M, Usea L et al (2012) Indolocarbazole-Based Ligands for Ladder-Type Four-Coordinate Boron Complexes. Org Lett 14:3360–3363. https://doi.org/10.1021/ol301339y

    Article  CAS  PubMed  Google Scholar 

  83. Bergman J (2008). Recent progress in the chemistry and applications of indolocarbazoles. 64:9159–9180. https://doi.org/10.1016/j.tet.2008.06.101

  84. Shi H, Yuan J, Wu X et al (2014) Two novel indolo[3,2-b]carbazole derivatives containing dimesitylboron moieties: synthesis, photoluminescent and electroluminescent properties. New J Chem 38:2368–2378. https://doi.org/10.1039/C4NJ00140K

    Article  CAS  Google Scholar 

  85. Mula S, Leclerc N, Lévêque P et al (2018) Synthesis of Indolo[3,2- b ]carbazole-Based Boron Complexes with Tunable Photophysical and Electrochemical Properties. J Organomet Chem 83:14406–14418. https://doi.org/10.1021/acs.joc.8b01948

    Article  CAS  Google Scholar 

  86. Kawaguchi K, Nakano K, Nozaki K (2007) Synthesis of Ladder-Type π-Conjugated Heteroacenes via Palladium-Catalyzed Double N-Arylation and Intramolecular O-Arylation. J Organomet Chem 72:5119–5128. https://doi.org/10.1021/jo070427p

    Article  CAS  Google Scholar 

  87. Gu R, Hameurlaine A, Dehaen W (2006) Facile One-Pot Synthesis of Novel 6-Monosubstituted 5,11-Dihydroindolo[3,2- b ]carbazoles and Preparation of Different Derivatives. Synlett 2006:1535–1538. https://doi.org/10.1055/s-2006-944183

    Article  CAS  Google Scholar 

  88. Velasco D, Jankauskas V, Stumbraite J, et al (2009). Indolo [ 3 , 2- b ] carbazole derivatives as hole transporting materials for electrophotography. 159:654–658. https://doi.org/10.1016/j.synthmet.2008.12.011

  89. Kirkus M, Grazulevicius JV, Grigalevicius S et al (2009) monomer and polymers. Eur Polym J 45:410–417. https://doi.org/10.1016/j.eurpolymj.2008.10.014

    Article  CAS  Google Scholar 

  90. Srour H, Doan T-H, Da Silva E et al (2016) Synthesis and molecular properties of methoxy-substituted diindolo[3,2-b:2′,3′-h]carbazoles for organic electronics obtained by a consecutive twofold Suzuki and twofold Cadogan reaction. J Mater Chem C 4:6270–6279. https://doi.org/10.1039/C6TC02009G

    Article  CAS  Google Scholar 

  91. Cuadrado A, Cuesta J, Puigdollers J, Velasco D (2018) Air stable organic semiconductors based on diindolo [ 3 , 2- a : 3 ′ , 2 ′ -c ] carbazole. Org Electron 62:35–42. https://doi.org/10.1016/j.orgel.2018.07.004

    Article  CAS  Google Scholar 

  92. Reghu RR, Volyniuk D, Kostiv N et al (2016) Dyes and Pigments Symmetry versus asymmetry : Synthesis and studies of benzotriindole- derived carbazoles displaying different electrochemical and optical properties. Dyes Pigments 125:159–168. https://doi.org/10.1016/j.dyepig.2015.10.013

    Article  CAS  Google Scholar 

  93. Sarac AS, Bardavit Y (2004) N-VINYLCARBAZOLE-STYRENE FREE RADICAL POLYMERIZATION AND ELECTROCHEMICAL AND CHEMICAL OXIDATION OF P[NVC <scp>Z</scp> – <scp>CO</scp> –ST <scp>Y</scp> ] AND P[NVC <scp>Z</scp> – <scp>CO</scp> –AN]: CYCLIC VOLTAMMETRIC, SPECTROSCOPIC (FTIR), AND CONDUCTOME. Int J Polym Mater 53:185–200. https://doi.org/10.1080/00914030490267609

    Article  CAS  Google Scholar 

  94. Laba K, Data P, Zassowski P et al (2015) Electrochemically Induced Synthesis of Poly(2,6-carbazole). Macromol Rapid Commun 36:1749–1755. https://doi.org/10.1002/marc.201500260

    Article  CAS  PubMed  Google Scholar 

  95. Zhuang D-X, Chen P-Y (2009) Electrochemical formation of polycarbazole films in air- and water-stable room-temperature ionic liquids. J Electroanal Chem 626:197–200. https://doi.org/10.1016/j.jelechem.2008.12.012

    Article  CAS  Google Scholar 

  96. Pokhrel B, Kalita A, Dolui SK (2011) Synthesis, Characterization, and Study of Electrochemical Behavior of N-alkyl Substituted Polycarbazole Derivatives. Int J Polym Mater 60:825–836. https://doi.org/10.1080/00914037.2011.557811

    Article  CAS  Google Scholar 

  97. Bauld NL, Roh Y (2001) An unprecedented cation radical chain Diels–Alder polymerization leading to novel carbazole polymers. Tetrahedron Lett 42:1437–1439. https://doi.org/10.1016/S0040-4039(00)02301-7

    Article  CAS  Google Scholar 

  98. Ban J, Lim M, Shabbir S et al (2020) Site-Specific Synthesis of Carbazole Derivatives through Aryl Homocoupling and Amination. Synth 52:917–927. https://doi.org/10.1055/s-0039-1690759

    Article  CAS  Google Scholar 

  99. Yang L, Zhang Y, Zou X et al (2018) Visible-light-promoted intramolecular C–H amination in aqueous solution: synthesis of carbazoles. Green Chem 20:1362–1366. https://doi.org/10.1039/C7GC03392C

    Article  CAS  Google Scholar 

  100. Leditschke H (1953) Über eine vereinfachte Täubersche Carbazol-Synthese. Chem Ber 86:522–524. https://doi.org/10.1002/cber.19530860415

    Article  CAS  Google Scholar 

  101. Ullmann F, Bielecki J (1901) Ueber Synthesen in der Biphenylreihe. Ber Dtsch Chem Ges 34:2174–2185. https://doi.org/10.1002/cber.190103402141

    Article  CAS  Google Scholar 

  102. Ullmann F (1904) Ueber symmetrische Biphenylderivate. Justus Liebig’s Ann der Chemie 332:38–81. https://doi.org/10.1002/jlac.19043320104

    Article  Google Scholar 

  103. Fanta PE (1946) The Ullmann Synthesis of Biaryls. Chem Rev 38:139–196. https://doi.org/10.1021/cr60119a004

    Article  CAS  PubMed  Google Scholar 

  104. Herbert MR, Siegel DL, Staszewski L et al (2010) Synthesis and SAR of 2-aryl-3-aminomethylquinolines as agonists of the bile acid receptor TGR5. Bioorg Med Chem Lett 20:5718–5721. https://doi.org/10.1016/j.bmcl.2010.08.014

    Article  CAS  PubMed  Google Scholar 

  105. Alkynes A, Ni P, Tan J et al (2019) Metal-Free Double Csp2–H Bond Functionalization: Strategy for Synthesizing Benzo[a]carbazoles from 2-Arylindoles and Acetophenones/Alkynes. Org Lett 21:3687–3691. https://doi.org/10.1021/acs.orglett.9b01138

    Article  CAS  Google Scholar 

  106. Parisien-Collette S, Cruché C, Abel-Snape X, Collins SK (2017) Photochemical intramolecular amination for the synthesis of heterocycles. Green Chem 19:4798–4803. https://doi.org/10.1039/C7GC02261A

    Article  CAS  Google Scholar 

  107. Hirano K, Inaba Y, Takahashi N et al (2011) Direct Synthesis of Fused Indoles by Gold-Catalyzed Cascade Cyclization of Diynes. J Organomet Chem 76:1212–1227. https://doi.org/10.1021/jo102507c

    Article  CAS  Google Scholar 

  108. Wu F, Huang W, Yiliqi et al (2018) Relay Catalysis of Bismuth Trichloride and Byproduct Hydrogen Bromide Enables the Synthesis of Carbazole and Benzo[α]carbazoles from Indoles and α-Bromoacetaldehyde Acetals. Adv Synth Catal 360:3318–3330. https://doi.org/10.1002/adsc.201800669

    Article  CAS  Google Scholar 

  109. Chen G, Zhang X, Jia R et al (2018) Selective Synthesis of Benzo[ a ]Carbazoles and Indolo[2,1- a ]-Isoquinolines via Rh(III)-Catalyzed C−H Functionalizations of 2-Arylindoles with Sulfoxonium Ylides. Adv Synth Catal 360:3781–3787. https://doi.org/10.1002/adsc.201800622

    Article  CAS  Google Scholar 

  110. Ni P, Tan J, Zhao W et al (2019) A Three-Component Strategy for Benzoselenophene Synthesis under Metal-Free Conditions Using Selenium Powder. Org Lett 21:3518–3522. https://doi.org/10.1021/acs.orglett.9b00739

    Article  CAS  PubMed  Google Scholar 

  111. Bathula C, Kim M, Song CE et al (2015) Concentration-Dependent Pyrene-Driven Self-Assembly in Benzo[1,2- b :4,5- b ′]dithiophene (BDT)–Thienothiophene (TT)–Pyrene Copolymers. Macromolecules 48:3509–3515. https://doi.org/10.1021/acs.macromol.5b00760

    Article  CAS  Google Scholar 

  112. Qiu F, Tu C, Chen Y et al (2010) Control of the Optical Properties of a Star Copolymer with a Hyperbranched Conjugated Polymer Core and Poly(ethylene glycol) Arms by Self-Assembly. Chem – A Eur J 16:12710–12717. https://doi.org/10.1002/chem.201001084

    Article  CAS  Google Scholar 

  113. Sathiyan G, Sivakumar EKT, Ganesamoorthy R et al (2016) Review of carbazole based conjugated molecules for highly efficient organic solar cell application. Tetrahedron Lett 57:243–252. https://doi.org/10.1016/j.tetlet.2015.12.057

    Article  CAS  Google Scholar 

  114. Wang H, Chen G, Xu X et al (2010) The synthesis and optical properties of benzothiazole-based derivatives with various π-electron donors as novel bipolar fluorescent compounds. Dyes Pigments 86:238–248. https://doi.org/10.1016/j.dyepig.2010.01.010

    Article  CAS  Google Scholar 

  115. Park S-M, Yook K-S, Lee W-H et al (2013) Synthesis and characterization of thermally crosslinkable hole-transporting polymers for PLEDs. J Polym Sci Part A Polym Chem 51:5111–5117. https://doi.org/10.1002/pola.26943

    Article  CAS  Google Scholar 

  116. Michinobu T, Osako H, Shigehara K (2010) Synthesis and Properties of 1,8-Carbazole-Based Conjugated Copolymers. Polymers (Basel) 2:159–173. https://doi.org/10.3390/polym2030159

    Article  CAS  Google Scholar 

  117. Michinobu T, Osako H, Shigehara K (2009) Synthesis and Properties of Conjugated Poly(1,8-carbazole)s. Macromolecules 42:8172–8180. https://doi.org/10.1021/ma901502b

    Article  CAS  Google Scholar 

  118. Blouin N, Michaud A, Gendron D et al (2008) Toward a Rational Design of Poly(2,7-Carbazole) Derivatives for Solar Cells. J Am Chem Soc 130:732–742. https://doi.org/10.1021/ja0771989

    Article  CAS  PubMed  Google Scholar 

  119. Zhang Z, Wang J (2012) Structures and properties of conjugated Donor–Acceptor copolymers for solar cell applications. J Mater Chem 22:4178. https://doi.org/10.1039/c2jm14951f

    Article  CAS  Google Scholar 

  120. Park SH, Roy A, Beaupré S et al (2009) Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photonics 3:297–302. https://doi.org/10.1038/nphoton.2009.69

    Article  CAS  Google Scholar 

  121. Alem S, Graddage N, Lu J et al (2018) Flexographic printing of polycarbazole-based inverted solar cells. Org Electron 52:146–152. https://doi.org/10.1016/j.orgel.2017.10.016

    Article  CAS  Google Scholar 

  122. Vintu M, Unnikrishnan G, Shiju E, Chandrasekharan K (2019) Indolo[3,2-b]carbazole-based poly(arylene ethynylene)s through Sonogashira coupling for optoelectronic and sensing applications. J Appl Polym Sci 136:46940. https://doi.org/10.1002/app.46940

    Article  CAS  Google Scholar 

  123. Lu Q, Chen JG, Xiao JQ (2013) Nanostructured Electrodes for High-Performance Pseudocapacitors. Angew Chem Int Ed 52:1882–1889. https://doi.org/10.1002/anie.201203201

    Article  CAS  Google Scholar 

  124. Tang W, Peng L, Yuan C et al (2015) Facile synthesis of 3D reduced graphene oxide and its polyaniline composite for super capacitor application. Synth Met 202:140–146. https://doi.org/10.1016/j.synthmet.2015.01.031

    Article  CAS  Google Scholar 

  125. Lai L, Yang H, Wang L et al (2012) Preparation of Supercapacitor Electrodes through Selection of Graphene Surface Functionalities. ACS Nano 6:5941–5951. https://doi.org/10.1021/nn3008096

    Article  CAS  PubMed  Google Scholar 

  126. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12. https://doi.org/10.1016/j.jpowsour.2010.06.084

    Article  CAS  Google Scholar 

  127. Ates M, Özten E (2018) Supercapacitor device performances of polycarbazole/graphene and polycarbazole/nanoclay/graphene nanocomposites. Plast Rubber Compos 47:192–201. https://doi.org/10.1080/14658011.2018.1463687

    Article  CAS  Google Scholar 

  128. Meng C, Liu C, Fan S (2009) Flexible carbon nanotube/polyaniline paper-like films and their enhanced electrochemical properties. Electrochem Commun 11:186–189. https://doi.org/10.1016/j.elecom.2008.11.005

    Article  CAS  Google Scholar 

  129. Ramya R, Sivasubramanian R, Sangaranarayanan MV (2013) Conducting polymers-based electrochemical supercapacitors—Progress and prospects. Electrochim Acta 101:109–129. https://doi.org/10.1016/j.electacta.2012.09.116

    Article  CAS  Google Scholar 

  130. Duran B, Ünver İÇ, Bereket G (2020) Investigation of Supporting Electrolyte Effect on Supercapacitor Properties of Poly(Carbazole) Films. J Electrochem Sci Technol 11:41–49. https://doi.org/10.33961/jecst.2019.00129

    Article  CAS  Google Scholar 

  131. Ates M, Sarac AS (2009) Capacitive behavior of polycarbazole- and poly(N-vinylcarbazole)-coated carbon fiber microelectrodes in various solutions. J Appl Electrochem 39:2043–2048. https://doi.org/10.1007/s10800-009-9882-6

    Article  CAS  Google Scholar 

  132. Qi Z, Koenig GM (2017) Review Article: Flow battery systems with solid electroactive materials. J Vac Sci Technol B, Nanotechnol Microelectron Mater Process Meas Phenom 35:040801. https://doi.org/10.1116/1.4983210

    Article  CAS  Google Scholar 

  133. Wang CT, Chen SH, Ma HY, Qi CS (2003) Protection of copper corrosion by carbazole and N-vinylcarbazole self-assembled films in NaCl solution. J Appl Electrochem 33:179–186. https://doi.org/10.1023/A:1024097208128

    Article  CAS  Google Scholar 

  134. Mahmoudian MR, Alias Y, Basirum WJ, Ebadi M (2011) Poly (N-methyl pyrrole) and its copolymer with o-toluidine electrodeposited on steel in mixture of DBSA and oxalic acid electrolytes. Curr Appl Phys 11:368–375. https://doi.org/10.1016/j.cap.2010.08.006

    Article  Google Scholar 

  135. Mollahosseini A, Noroozian E (2009) Electrodeposition of a highly adherent and thermally stable polypyrrole coating on steel from aqueous polyphosphate solution. Synth Met 159:1247–1254. https://doi.org/10.1016/j.synthmet.2009.02.015

    Article  CAS  Google Scholar 

  136. Rammelt U, Nguyen PT, Plieth W (2003) Corrosion protection by ultrathin films of conducting polymers. Electrochim Acta 48:1257–1262. https://doi.org/10.1016/S0013-4686(02)00833-2

    Article  CAS  Google Scholar 

  137. Hien NTL, Garcia B, Pailleret A, Deslouis C (2005) Role of doping ions in the corrosion protection of iron by polypyrrole films. Electrochim Acta 50:1747–1755. https://doi.org/10.1016/j.electacta.2004.10.072

    Article  CAS  Google Scholar 

  138. Abdallah M, Atwa ST, Salem MM, Fouda AS (2013) Synergistic effect of some halide ions on the inhibition of zinc corrosion in hydrocchloric acid by tetrahydro carbazole derivatives compounds. Int J Electrochem Sci 8:10001–10021

    CAS  Google Scholar 

  139. Duran B, Çakmakcı İ, Bereket G (2013) Role of supporting electrolyte on the corrosion performance of poly(carbazole) films deposited on stainless steel. Corros Sci 77:194–201. https://doi.org/10.1016/j.corsci.2013.08.001

    Article  CAS  Google Scholar 

  140. Ates M, Özyılmaz AT (2015) The application of polycarbazole, polycarbazole/nanoclay and polycarbazole/Zn-nanoparticles as a corrosion inhibition for SS304 in saltwater. Prog Org Coat 84:50–58. https://doi.org/10.1016/j.porgcoat.2015.02.013

    Article  CAS  Google Scholar 

  141. Miyazaki T, Kim S-K, Hoshino K (2006) Nanostructured Hybrid Materials Formed by Cell Reaction between Polycarbazole and Metals. Chem Mater 18:5302–5311. https://doi.org/10.1021/cm060613w

    Article  CAS  Google Scholar 

  142. Ates M (2016) A review on conducting polymer coatings for corrosion protection. J Adhes Sci Technol 30:1510–1536. https://doi.org/10.1080/01694243.2016.1150662

    Article  CAS  Google Scholar 

  143. Düdükcü M, Udum YA, Ergün Y, Köleli F (2009) Electrodeposition of poly(4-methyl carbazole-3-carboxylic acid) on steel surfaces and corrosion protection of steel. J Appl Polym Sci 111:1496–1500. https://doi.org/10.1002/app.29151

    Article  CAS  Google Scholar 

  144. Frau AF, Pernites RB, Advincula RC (2010) A Conjugated Polymer Network Approach to Anticorrosion Coatings: Poly(vinylcarbazole) Electrodeposition. Ind Eng Chem Res 49:9789–9797. https://doi.org/10.1021/ie100813t

    Article  CAS  Google Scholar 

  145. Sarac AS, Gilsing H-D, Gencturk A, Schulz B (2007) Electrochemically polymerized 2,2-dimethyl-3,4-propylenedioxythiophene on carbon fiber for microsupercapacitor. Prog Org Coat 60:281–286. https://doi.org/10.1016/j.porgcoat.2007.07.025

    Article  CAS  Google Scholar 

  146. Ates M, Karazehir T, Arican F, Eren N (2013) Electrolyte type and concentration effects on poly(3-(2- aminoethyl thiophene) electro-coated on glassy carbon electrode via impedimetric study Iran Polym J 22:199–208. https://doi.org/10.1007/s13726-012-0117-z

  147. Behpour M, Ghoreishi SM, Soltani N et al (2008) Electrochemical and theoretical investigation on the corrosion inhibition of mild steel by thiosalicylaldehyde derivatives in hydrochloric acid solution. Corros Sci 50:2172–2181. https://doi.org/10.1016/j.corsci.2008.06.020

    Article  CAS  Google Scholar 

  148. Elangovan N, Srinivasan A, Pugalmani S et al (2017) Development of poly(vinylcarbazole)/alumina nanocomposite coatings for corrosion protection of 316L stainless steel in 3.5% NaCl medium. J Appl Polym Sci 134:44937. https://doi.org/10.1002/app.44937

    Article  CAS  Google Scholar 

  149. Cosnier S, Szunerits S, Marks RS et al (2001) Mediated electrochemical detection of catechol by tyrosinase-based poly(dicarbazole) electrodes. J Biochem Biophys Methods 50:65–77. https://doi.org/10.1016/S0165-022X(01)00176-2

    Article  CAS  PubMed  Google Scholar 

  150. Chen Y, Chen L, Bi R et al (2012) A potentiometric chiral sensor for l-Phenylalanine based on crosslinked polymethylacrylic acid–polycarbazole hybrid molecularly imprinted polymer. Anal Chim Acta 754:83–90. https://doi.org/10.1016/j.aca.2012.09.048

    Article  CAS  PubMed  Google Scholar 

  151. Lakshmi D, Bossi A, Whitcombe MJ et al (2009) Electrochemical Sensor for Catechol and Dopamine Based on a Catalytic Molecularly Imprinted Polymer-Conducting Polymer Hybrid Recognition Element. Anal Chem 81:3576–3584. https://doi.org/10.1021/ac802536p

    Article  CAS  PubMed  Google Scholar 

  152. Gerard M, Choubey A, Malhotra BD (2001) Review: Application of Conducting Polymer to Biosensors. Biosens Bioelectron 17:345–359

    Article  Google Scholar 

  153. Ates M (2013) A review study of (bio)sensor systems based on conducting polymers. Mater Sci Eng C 33:1853–1859. https://doi.org/10.1016/j.msec.2013.01.035

    Article  CAS  Google Scholar 

  154. Pernites R, Ponnapati R, Felipe MJ, Advincula R (2011) Electropolymerization molecularly imprinted polymer (E-MIP) SPR sensing of drug molecules: Pre-polymerization complexed terthiophene and carbazole electroactive monomers. Biosens Bioelectron 26:2766–2771. https://doi.org/10.1016/j.bios.2010.10.027

    Article  CAS  PubMed  Google Scholar 

  155. Olgac R, Soganci T, Baygu Y et al (2017) Zinc(II) phthalocyanine fused in peripheral positions octa-substituted with alkyl linked carbazole: Synthesis, electropolymerization and its electro-optic and biosensor applications. Biosens Bioelectron 98:202–209. https://doi.org/10.1016/j.bios.2017.06.028

    Article  CAS  PubMed  Google Scholar 

  156. Doyranli C, Baycan Koyuncu F (2016) Carbazole based electrochromic polymers with benzoazole units: Effect of heteroatom variation on electrochromic performance. Express Polym Lett 10:762–770. https://doi.org/10.3144/expresspolymlett.2016.70

    Article  CAS  Google Scholar 

  157. Durmus A, Gunbas GE, Camurlu P, Toppare L (2007). A neutral state green polymer with a superior transmissive light blue oxidized state Chem Commun 3246. https://doi.org/10.1039/b704936f

  158. (2018) All-in-One Gel-Based Electrochromic Devices: Strengths and Recent Developments. Materials (Basel) 11:414. https://doi.org/10.3390/ma11030414

  159. Monk PMS (1997) The effect of ferrocyanide on the performance of heptyl viologen-based electrochromic display devices. J Electroanal Chem 432:175–179. https://doi.org/10.1016/S0022-0728(97)00078-8

    Article  CAS  Google Scholar 

  160. Koyuncu S, Kaya İ, Koyuncu FB, Ozdemir E (2009) Electrochemical, optical and electrochromic properties of imine polymers containing thiophene and carbazole units. Synth Met 159:1034–1042. https://doi.org/10.1016/j.synthmet.2009.01.024

    Article  CAS  Google Scholar 

  161. Oral A, Koyuncu S, Kaya İ (2009) Polystyrene functionalized carbazole and electrochromic device application. Synth Met 159:1620–1627. https://doi.org/10.1016/j.synthmet.2009.04.026

    Article  CAS  Google Scholar 

  162. Data P, Zassowski P, Lapkowski M et al (2014) Electrochemical and spectroelectrochemical comparison of alternated monomers and their copolymers based on carbazole and thiophene derivatives. Electrochim Acta 122:118–129. https://doi.org/10.1016/j.electacta.2013.11.167

    Article  CAS  Google Scholar 

  163. Dumur F (2015) Carbazole-based polymers as hosts for solution-processed organic light-emitting diodes: Simplicity, efficacy. Org Electron 25:345–361. https://doi.org/10.1016/j.orgel.2015.07.007

    Article  CAS  Google Scholar 

  164. Wang G, Yuan C, Wu H, Wei Y (1995) Importance of poly(N-vinylcarbazole) dopant to poly(3-octylthiophene) electroluminescence. J Appl Phys 78:2679–2683. https://doi.org/10.1063/1.360130

    Article  CAS  Google Scholar 

  165. Hu B, Yang Z, Karasz FE (1994) Electroluminescence of pure poly( N -vinylcarbazole) and its blends with a multiblock copolymer. J Appl Phys 76:2419–2422. https://doi.org/10.1063/1.358458

    Article  CAS  Google Scholar 

  166. Kido J, Hongawa K, Okuyama K, Nagai K (1994) White light-emitting organic electroluminescent devices using the poly( N -vinylcarbazole) emitter layer doped with three fluorescent dyes. Appl Phys Lett 64:815–817. https://doi.org/10.1063/1.111023

    Article  CAS  Google Scholar 

  167. Hayer A, Van Regemorter T, Höfer B et al (2012) On the formation mechanism for electrically generated exciplexes in a carbazole-pyridine copolymer. J Polym Sci Part B Polym Phys 50:361–369. https://doi.org/10.1002/polb.23011

    Article  CAS  Google Scholar 

  168. Moonsin P, Prachumrak N, Rattanawan R et al (2012) Carbazole dendronised triphenylamines as solution processed high Tg amorphous hole-transporting materials for organic electroluminescent devices. Chem Commun 48:3382. https://doi.org/10.1039/c2cc16878b

    Article  CAS  Google Scholar 

  169. Jiang W, Ge Z, Cai P et al (2012) Star-shaped dendritic hosts based on carbazole moieties for highly efficient blue phosphorescent OLEDs. J Mater Chem 22:12016. https://doi.org/10.1039/c2jm31606d

    Article  CAS  Google Scholar 

  170. Liu Y, Guo J, Luo T et al (2017) Synthesis and luminescence properties of long-chain (2,7-carbazolyl)-adamantane copolymers. J Polym Res 24:114. https://doi.org/10.1007/s10965-017-1265-9

    Article  CAS  Google Scholar 

  171. Farah AA, Veinot JGC, Najman M, Pietro WJ (2000) REDOX ACTIVE, MULTI-CHROMOPHORE RU(II) POLYPYRIDYL-CARBAZOLE COPOLYMERS: SYNTHESIS AND CHARACTERIZATION. J Macromol Sci Part A 37:1507–1529. https://doi.org/10.1081/MA-100101168

    Article  Google Scholar 

  172. Patra A, Wijsboom YH, Leitus G, Bendikov M (2011) Tuning the Band Gap of Low-Band-Gap Polyselenophenes and Polythiophenes: The Effect of the Heteroatom †. Chem Mater 23:896–906. https://doi.org/10.1021/cm102395v

    Article  CAS  Google Scholar 

  173. Romero DB, Schaer M, Leclerc M et al (1996) The role of carbazole in organic light-emitting devices. Synth Met 80:271–277. https://doi.org/10.1016/0379-6779(96)80213-X

    Article  CAS  Google Scholar 

  174. Grice AW, Bradley DDC, Bernius MT et al (1998) High brightness and efficiency blue light-emitting polymer diodes. Appl Phys Lett 73:629–631. https://doi.org/10.1063/1.121878

    Article  CAS  Google Scholar 

  175. Chen Q, Han B-H (2018) Microporous Polycarbazole Materials: From Preparation and Properties to Applications. Macromol Rapid Commun 39:1800040. https://doi.org/10.1002/marc.201800040

    Article  CAS  Google Scholar 

  176. Chen Q, Luo M, Hammershøj P et al (2012) Microporous Polycarbazole with High Specific Surface Area for Gas Storage and Separation. J Am Chem Soc 134:6084–6087. https://doi.org/10.1021/ja300438w

    Article  CAS  PubMed  Google Scholar 

  177. Wang X, Zhao Y, Wei L et al (2015) Synthetic Control of Pore Properties in Conjugated Microporous Polymers Based on Carbazole Building Blocks. Macromol Chem Phys 216:504–510. https://doi.org/10.1002/macp.201400508

    Article  CAS  Google Scholar 

  178. Chen Q, Liu D-P, Zhu J-H, Han B-H (2014) Mesoporous Conjugated Polycarbazole with High Porosity via Structure Tuning. Macromolecules 47:5926–5931. https://doi.org/10.1021/ma501330v

    Article  CAS  Google Scholar 

  179. Ogden JM (1999) P <scp>ROSPECTS FOR</scp> B <scp>UILDING</scp> A H <scp>YDROGEN</scp> E <scp>NERGY</scp> I <scp>NFRASTRUCTURE</scp>. Annu Rev Energy Environ 24:227–279. https://doi.org/10.1146/annurev.energy.24.1.227

    Article  Google Scholar 

  180. Watanabe M (2017) Dye-sensitized photocatalyst for effective water splitting catalyst. Sci Technol Adv Mater 18:705–723. https://doi.org/10.1080/14686996.2017.1375376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Armaroli N, Balzani V (2011) The Hydrogen Issue. ChemSusChem 4:21–36. https://doi.org/10.1002/cssc.201000182

    Article  CAS  PubMed  Google Scholar 

  182. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278. https://doi.org/10.1039/B800489G

    Article  CAS  PubMed  Google Scholar 

  183. Maeda K, Domen K (2010) Solid Solution of GaN and ZnO as a Stable Photocatalyst for Overall Water Splitting under Visible Light †. Chem Mater 22:612–623. https://doi.org/10.1021/cm901917a

    Article  CAS  Google Scholar 

  184. Yuan L, Han C, Yang M-Q, Xu Y-J (2016) Photocatalytic water splitting for solar hydrogen generation: fundamentals and recent advancements. Int Rev Phys Chem 35:1–36. https://doi.org/10.1080/0144235X.2015.1127027

    Article  CAS  Google Scholar 

  185. Balzani V, Credi A, Venturi M (2008) Photochemical Conversion of Solar Energy. ChemSusChem 1:26–58. https://doi.org/10.1002/cssc.200700087

    Article  CAS  PubMed  Google Scholar 

  186. Bird RE, Hulstrom RL, Lewis LJ (1983) Terrestrial solar spectral data sets. Sol Energy 30:563–573. https://doi.org/10.1016/0038-092X(83)90068-3

    Article  Google Scholar 

  187. Manfredi N, Monai M, Montini T et al (2017) Enhanced photocatalytic hydrogen generation using carbazole-based sensitizers. Sustain Energy Fuels 1:694–698. https://doi.org/10.1039/C7SE00075H

    Article  CAS  Google Scholar 

  188. Hisatomi T, Kubota J, Domen K (2014) Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 43:7520–7535. https://doi.org/10.1039/C3CS60378D

    Article  CAS  PubMed  Google Scholar 

  189. Mansha M, Khan I, Ullah N, Qurashi A (2017) Synthesis, characterization and visible-light-driven photoelectrochemical hydrogen evolution reaction of carbazole-containing conjugated polymers. Int J Hydrog Energy 42:10952–10961. https://doi.org/10.1016/j.ijhydene.2017.02.053

    Article  CAS  Google Scholar 

  190. Gao J, Chen W, Dou L et al (2014) Elucidating Double Aggregation Mechanisms in the Morphology Optimization of Diketopyrrolopyrrole-Based Narrow Bandgap Polymer Solar Cells. Adv Mater 26:3142–3147. https://doi.org/10.1002/adma.201305645

    Article  CAS  PubMed  Google Scholar 

  191. Matsuoka S, Kohzuki T, Nakamura A, et al (1991). Efficient visible-light-driven photocatalysis. Poly(pyridine-2,5-diyl)-catalysed hydrogen photoevolution and photoreduction of carbonyl compounds. J Chem Soc Chem Commun 580. https://doi.org/10.1039/c39910000580

  192. Li L, Lo W, Cai Z et al (2016) Donor–Acceptor Porous Conjugated Polymers for Photocatalytic Hydrogen Production: The Importance of Acceptor Comonomer. Macromolecules 49:6903–6909. https://doi.org/10.1021/acs.macromol.6b01764

    Article  CAS  Google Scholar 

  193. Chu S, Wang Y, Wang C et al (2013) Bandgap modulation of polyimide photocatalyst for optimum H2 production activity under visible light irradiation. Int J Hydrog Energy 38:10768–10772. https://doi.org/10.1016/j.ijhydene.2013.02.035

    Article  CAS  Google Scholar 

  194. Kumar NS, Dhar A, Ibrahim AA et al (2018) Designing and fabrication of phenothiazine and carbazole based sensitizers for photocatalytic water splitting application. Int J Hydrog Energy 43:17057–17063. https://doi.org/10.1016/j.ijhydene.2018.07.138

    Article  CAS  Google Scholar 

  195. Lakowicz JR, Masters BR (2008) Principles of Fluorescence Spectroscopy, Third Edition. J Biomed Opt 13:029901. https://doi.org/10.1117/1.2904580

    Article  Google Scholar 

  196. Yin J, Ma Y, Li G et al (2020) A versatile small-molecule fluorescence scaffold: Carbazole derivatives for bioimaging. Coord Chem Rev 412:213257. https://doi.org/10.1016/j.ccr.2020.213257

    Article  CAS  Google Scholar 

  197. Li D, Sun X, Huang J et al (2016) A carbazole-based “turn-on” two-photon fluorescent probe for biological Cu2+ detection vis Cu2+-promoted hydrolysis. Dyes Pigments 125:185–191. https://doi.org/10.1016/j.dyepig.2015.10.016

    Article  CAS  Google Scholar 

  198. Liu Y, Meng F, He L et al (2016) Fluorescence behavior of a unique two-photon fluorescent probe in aggregate and solution states and highly sensitive detection of RNA in water solution and living systems. Chem Commun 52:8838–8841. https://doi.org/10.1039/C6CC03746A

    Article  CAS  Google Scholar 

  199. Liu Y, Niu J, Wang W et al (2018) Simultaneous Imaging of Ribonucleic Acid and Hydrogen Sulfide in Living Systems with Distinct Fluorescence Signals Using a Single Fluorescent Probe. Adv Sci 5:1700966. https://doi.org/10.1002/advs.201700966

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are thankful to Dr. C. P. Ramanarayanan, Vice-Chancellor of DIAT (DU), Pune for the motivation and support. The first author would like to acknowledge Dr. B. Srinivasulu, Principal Director & Head of CIPET: Institute of Plastics Technology (IPT), Kochi, for the support. The authors are thankful to Mr. Raviprakash Magisetty, Mr. Prakash Gore, and Mr. Swaroop Gharde for their persistent technical support throughout the review writing. The authors are thankful to all anonymous Reviewers and the Editor for improving the quality of the revised manuscript by their valuable suggestions, and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balasubramanian Kandasubramanian.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 361 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayana, V., Kandasubramanian, B. Polycarbazole and its derivatives: progress, synthesis, and applications. J Polym Res 27, 285 (2020). https://doi.org/10.1007/s10965-020-02254-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02254-7

Keywords

Navigation