Skip to main content
Log in

Aliphatic polyesters based on 1,4-butanediol and even numbered C4 - C20 dicarboxylic acids - synthesis and properties including after surface treatment by VUV photo-oxidation

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Aliphatic polyesters were synthesized from 1,4-butanediol and predominantly renewable dicarboxylic acids containing even numbered carbons from 4 to 20 (succinic acid to eicosanedioic acid). Melt polymerizations were conducted up to 220 °C with titanium tetrabutoxide as polymerization catalyst. Two polymerization methods were applied: (1) stoichiometrically equivalent amounts of diol and diacid with 14 hours under argon followed by 10 hours under reduced pressure, (2) a 10 mol % excess of diol, with 6 hours under the inert gas and 6 hours under reduced pressure. Molecular weight properties were determined by size exclusion chromatography in chloroform and polystyrene as calibration standards. For the polyesters with the C6 to C20 diacids, Mw obtained by Method 1 lied between 15,800 to 31,200 g/mol, and for Method 2 between 27,000 and 180,400 g/mol (average of Mw for PBS was 194,000 g/mol). 1H NMR and 13C NMR spectra of all polymers were obtained, peak assignments were made and the microstructure of the polymers was verified. In addition, peaks associated with end-groups were identified. Thermal properties of the polymers were determined by differential scanning calorimetry, dynamic mechanical analysis and thermal gravimetric analysis. For the polyesters obtained with C6 to C20 diacids, the highest Tg was 1.25 °C (from tan δ) and the highest Tm was 88.8 °C, both with the C20 diacid. The polymers were also treated by vacuum ultraviolet (VUV) photo-oxidation as a plasma surface modification. The wettability of the original polymers and after their VUV photo-oxidation was measured by contact angle goniometry with water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Schneiderman DK, Hillmyer MA (2017) 50th anniversary perspective: there is a great future in sustainable polymers. Macromolecules 50:3733–3749. https://doi.org/10.1021/acs.macromol.7b00293

    Article  CAS  Google Scholar 

  2. Zhu Y, Romain C, Williams CK (2016) Sustainable polymers from renewable resources. Nature 540:354–362. https://doi.org/10.1038/nature21001

    Article  CAS  PubMed  Google Scholar 

  3. Cheng HN, Gross RA (2020). In: Cheng HN, Gross RA (eds) Sustainable and Green Polymer Chemistry. Oxford University Press (ACS), Washington, D.C

    Google Scholar 

  4. Platnieks O, Gaidukovs S, Thakur VK, Barkane A, Beluns S (2021) Bio-based poly (butylene succinate): recent progress, challenges and future opportunities. Eur Polym 161:10855. https://doi.org/10.1016/j.eurpolymj.2021.110855

    Article  CAS  Google Scholar 

  5. Rafiqah SA, Khalina A, Harmaen AS, Tawakkal IA, Zaman K, Asim M, Nurrazi MN, Lee CH (2021) A review on Properties and Application of Bio-Based Poly(Butylene Succinate). Polymers 13:1436. https://doi.org/10.3390/polym13091436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xu J, Guo BH (2010). In: Chen GQ (ed) Plastics from Bacteria. Microbiology Monographs. Springer, Berlin, Heidelberg, Germany

    Google Scholar 

  7. Sisti L, Totaro G, Marchese P (2016). In: Kalia S, Avérous L (eds) Biodegradable and biobased polymers for Environmental and Biomedical Applications. Scrivener Publishing, Wiley, Beverly, MA

    Google Scholar 

  8. Fujimaki T (1998) Processability and properties of aliphatic polyesters, ‘BIONOLLE’, synthesized by polycondensation reaction. Polym Degrad Stab 59:209–214. https://doi.org/10.1016/S0141-3910(97)00220-6

    Article  CAS  Google Scholar 

  9. Wang G-X, Huang D, Ji J-H, Völker C, Wurm FR (2021) Seawater-degradable polymers—fighting the Marine Plastic Pollution. Adv Sci 8:2001121. https://doi.org/10.1002/advs.202001121

    Article  CAS  Google Scholar 

  10. Adhikari D, Mukai M, Kubota K, Kai T, Kaneko N, Araki KS, Kubo M (2016) Degradation of Bioplastics in Soil and their degradation Effects on Environmental Microorganisms. J Agric Chem Environ 5:23–34. https://doi.org/10.4236/jacen.2016.51003

    Article  CAS  Google Scholar 

  11. Peñas MI, Pérez-Camargo RA, Hernández R, Müller AJ (2022) A review on current strategies for the modulation of Thermomechanical, Barrier, and Biodegradation Properties of Poly (Butylene Succinate) (PBS) and its Random Copolymers. Polymers 14:1025. https://doi.org/10.3390/polym14051025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aliotta L, Seggiani M, Lazzeri A, Gigante V, Cinelli P (2022) A brief review of poly (Butylene Succinate) (PBS) and its main copolymers: synthesis, Blends, Composites, Biodegradability, and applications. Polymers 14:844–867. https://doi.org/10.3390/polym14040844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ferreira LP, Moreira AN, Pinto JC, de Souza FC Jr (2015) Synthesis of poly(butylene succinate) using metal catalysts. Polym Eng Sci 55:1889–1896. https://doi.org/10.1002/pen.24029

    Article  CAS  Google Scholar 

  14. Jacquel N, Freyermouth F, Fenouillot F, Rousseau A, Pascault JP, Fuertes P, Saint-Loup R (2011) Synthesis and Properties of Poly(butylene succinate): efficiency of different transesterification catalysts. J Polym Sci Part A: Polym Chem 49:5301–5312. https://doi.org/10.1002/pola.25009

    Article  CAS  Google Scholar 

  15. Jin T-X, Zhou M, Hu S-D, Chen F, Fu Q (2014) Effect of Molecular Weight on the Properties of Poly(butylene succinate). Chin J Polym Sci 32:953–960. https://doi.org/10.1007/s10118-014-1463-4

    Article  CAS  Google Scholar 

  16. Wang C, Ming W, Yan D, Zhang C, Yang M, Liu Y, Zhang Y, Guo B, Wan Y, Xing J (2014) Novel membrane-based biotechnological alternative process for succinic acid production and chemical synthesis of bio-based poly (butylene succinate). Bioresour Technol 156:6–13. https://doi.org/10.1016/j.biortech.2013.12.043

    Article  CAS  PubMed  Google Scholar 

  17. Nagahata R, Nakamura T, Takeuchi K (2018) Microwave-assisted rapid synthesis of poly(butylene succinate): principal effect of microwave irradiation of accelerating the polycondensation reaction. Polym J 50:347–354. https://doi.org/10.1038/s41428-018-0024-z

    Article  CAS  Google Scholar 

  18. Debuissy T, Pollet E, Avérous L (2017) Synthesis and characterization of biobased poly(butylene succinate-ran-butylene adipate). Analysis of the composition-dependent physicochemical properties. Eur Polym J 87:84–98. https://doi.org/10.1016/j.eurpolymj.2016.12.012

    Article  CAS  Google Scholar 

  19. Ahn BD, Kim SH, Kim YH, Yang JS (2001) Synthesis and characterization of the biodegradable copolymers from succinic acid and adipic acid with 1,4-Butanediol. J Appl Polym Sci 82:2808–2826. https://doi.org/10.1002/app.2135

    Article  CAS  Google Scholar 

  20. Albertsson A-C (ed) (2013) Long-Term Properties of Polyolefins, Advances in Polymer Science. 169. Springer-Verlag, Berlin

  21. Stempfle F, Ortmann P, Mecking S (2016) Long-chain aliphatic polymers to Bridge the gap between Semicrystalline Polyolefins and traditional polycondensates. Chem Rev 116:4597–4641. https://doi.org/10.1021/acs.chemrev.5b00705

    Article  CAS  PubMed  Google Scholar 

  22. Barbiroli G, Lorenzetti L, Berti C, Fiorini M, Manaresi P (2003) Polyethylene like polymers. Aliphatic polyesters of dodecanedioic acid 1. Synthesis and properties. Eur Polym J 39:655–661. https://doi.org/10.1016/S0014-3057(02)00280-X

    Article  CAS  Google Scholar 

  23. Wang H, Ji J, Zhang W, Zhang Y, Jiang J, Wub Z, Pu S, Chu PK (2009) Biocompatibility and bioactivity of plasma-treated biodegradable poly(butylene succinate). Acta Biomater 5:279–287. https://doi.org/10.1016/j.actbio.2008.07.017

    Article  CAS  PubMed  Google Scholar 

  24. Hirotsu T, Castillo M, Nakayama K, Tsuruta S, Suzuki H (2007) Surface wetting phenomena of plasma polymer-coated sheets of poly(L-lactic acid)/poly(butylene succinate). Thin Solid Films 515:4125–4129. https://doi.org/10.1016/j.tsf.2006.02.084

    Article  CAS  Google Scholar 

  25. Kim SJ, Kwak HW, Kwon S, Jang H, Park SI (2020) Synthesis, characterization and Properties of Biodegradable Poly(Butylene Sebacate-Co-terephthalate). Polymers 1:2389. https://doi.org/10.3390/polym12102389

    Article  CAS  Google Scholar 

  26. Zhou C, Wei Z, Yu Y, Shao S, Leng X, Wang Y, Li Y (2019) Biobased long-chain aliphatic polyesters of 1,12-dodecanedioic acid with a variety of diols: odd-even effect and mechanical properties. Mater Today Commun 19:450–458. https://doi.org/10.1016/j.mtcomm.2019.05.005

    Article  CAS  Google Scholar 

  27. Baba T, Tachibana Y, Suda S, Kasuya K-I (2017) Evaluation of environmental degradability based on the number of methylene units in poly(butylene n-alkylenedionate). Polym Degrad Stab 138:18–26. https://doi.org/10.1016/j.polymdegradstab.2017.02.007

    Article  CAS  Google Scholar 

  28. Celli A, Barbiroli G, Berti C, Francesco DC, Lorenzetti C, Marchese P, Marianucci E (2007) Thermal Properties of Poly(alkylene dicarboxylate)s derived from 1,12-dodecanedioic acid and even aliphatic diols. J Polym Sci: Part B: Polym Phys 45:1053–1067. https://doi.org/10.1002/polb.21174

    Article  CAS  Google Scholar 

  29. Shirahama H, Kawaguchi Y, Aludin MS, Yasuda H (2001) Synthesis and enzymatic degradation of high Molecular Weight Aliphatic Polyesters. J Appl Polym Sci 80:340–347. https://doi.org/10.1002/1097-4628(20010418)80:3%3c340::AID-APP1105%3e3.0.CO;2-F

    Article  CAS  Google Scholar 

  30. Montaudo G, Rizzarelli P (2000) Synthesis and enzymatic degradation of aliphatic copolyesters. Polym Degrad Stab 70:305–314. https://doi.org/10.1016/S0141-3910(00)00139-7

    Article  CAS  Google Scholar 

  31. Jiang Y, Woortman AJJ, van Alberda GOR, Loos K (2015) Environmentally benign synthesis of saturated and unsaturated aliphatic polyesters via enzymatic polymerization of biobased monomers derived from renewable resources. Polym Chem 6:5451–5463. https://doi.org/10.1039/c5py00629e

    Article  CAS  Google Scholar 

  32. Mahapatro A, Kalra B, Kumar A, Gross RA (2003) Lipase-catalyzed polycondensations: Effect of Substrates and Solvent on Chain formation, dispersity, and end-group structure. Biomacromolecules 24:544–551. https://doi.org/10.1021/bm0257208

    Article  CAS  Google Scholar 

  33. Uyama H, Inada K, Kobayashi S (2000) Organic-Inorganic Hybrids from renewable plant oils and clay. Polym J 32:440–443. https://doi.org/10.1002/mabi.200300097

    Article  CAS  Google Scholar 

  34. Linko Y-Y, Wang Z-L, Seppälä J (1995) Lipase-catalyzed synthesis of poly(1,4-butyl sebacate) from sebacic acid or its derivatives with 1,4-butanediol. J Biotechnol 40:133–138. https://doi.org/10.1016/0168-1656(95)00039-S

    Article  CAS  Google Scholar 

  35. Zumstein MT, Rechsteiner D, Roduner N, Perz V, Ribitsch D, Guebitz GM, Kohler H-PE, McNeill K, Sander M (2017) Enzymatic hydrolysis of polyester thin films at the nanoscale: effects of polyester structure and enzyme active-site accessibility. Environ Sci Technol 51:7476–7485. https://doi.org/10.1021/acs.est.7b01330

    Article  CAS  PubMed  Google Scholar 

  36. Tachibana Y, Tsutsuba T, Kageyama K, Kasuya K-I (2021) Biodegradability of poly(butylene n -alkylenedionate)s composed of long-methylene chains as alternative polymers to polyethylene. Polym Degrad Stab 190:109650. https://doi.org/10.1016/j.polymdegradstab.2021.109650

    Article  CAS  Google Scholar 

  37. Vilela C, Silvestre AJD, Meier MAR (2012) Plant Oil-Based long-chain C 26 Monomers and their polymers. Macromol Chem Phys 213:2220–2227. https://doi.org/10.1002/macp.201200332

    Article  CAS  Google Scholar 

  38. Bunn CW (1955) The melting points of Chain Polymers. J Polym Sci 16:323–343. https://doi.org/10.1002/polb.1996.900

    Article  CAS  Google Scholar 

  39. Samson JAR, Techniques of Vacuum Ultraviolet Spectroscopy (1967) John Wiley & Sons, New York

  40. Takacs GA, Miri MJ, Kovach T (2021) Vacuum UV surface photo-oxidation of polymeric and other materials for improving adhesion: a critical review. Progr Adhes Adhes 6:559–585. https://doi.org/10.1002/9781119846703.ch12

    Article  Google Scholar 

  41. Badey P, Urbaczewski-Espunche E, Jugnet Y, Sage D, Minh Duc T, Chabert B (1994) Surface modification of poly(tetrafluoroethylene) by microwave plasma downstream treatment. Polymer 35:2472–2479. https://doi.org/10.1016/0032-3861(94)90365-4

    Article  CAS  Google Scholar 

  42. Lens JP, Spaay B, Terlingen JGA, Engbers GHM, Feijen J (1999) Mechanism of the immobilization of Surfactants on Polymer Surfaces by Means of an argon plasma treatment: influence of UV Radiation. Plasmas Polym 4:159–182. https://doi.org/10.1023/A:1021801009780

    Article  CAS  Google Scholar 

  43. Calvert JG, Pitts JN (1966) Photochemistry, John Wiley & Sons, New York, 1966

  44. Okabe H (1978) H. Photochemistry of Small Molecules. John Wiley & Sons, New York

    Google Scholar 

  45. Garin M, Tighzert L, Vroman I, Marinkovic S, Estrine B (2014) The kinetics of poly(butylene succinate) synthesis and the influence of Molar Mass on its Thermal Properties. J Appl Polym Sci 131:40639. https://doi.org/10.1002/app.40639

    Article  CAS  Google Scholar 

  46. Kricheldorf H R, Zolotukhin M G, Cárdenas J (2012) Non-Stoichiometric Polycondensations and the Synthesis of High Molar Mass Polycondensates. Macromol Rapid Commun 33: 1814-1832. https://doi.org/10.1002/marc.201200345

  47. Papageorgiou GZ, Bikiaris DN, Achilias DS, Nanaki S, Karagiannidis N (2010) Synthesis and comparative study of biodegradable poly(alkylene sebacate)s. J Polym Sci: Part B: Polym Phys 48:672–686. https://doi.org/10.1002/polb.21937

    Article  CAS  Google Scholar 

  48. Peng S, Bu Z, Wu L, Li B-G, Dubois P (2017) High Molecular Weight Poly(butylene succinate-co-furandicarboxylate) with 10 mol% of BF unit: synthesis, crystallization-melting Behavior and Mechanical Properties. Eur Polym J 96:248–255. https://doi.org/10.1016/j.eurpolymj.2017.09.008

    Article  CAS  Google Scholar 

  49. Bai Z, Shi K, Su T, Wang Z (2018) Correlation between the chemical structure and enzymatic hydrolysis of poly(butylene succinate), poly(butylene adipate), and poly(butylene suberate). Polym Degrad Stab 158:111–118. https://doi.org/10.1016/j.polymdegradstab.2018.10.024

    Article  CAS  Google Scholar 

  50. Woo EM, Wu MC (2005) Thermal and X-Ray analysis of polymorphic crystals, Melting, and Crystalline Transformation in Poly(butylene adipate). J Polym Sci: Part B: Polym Phys 43:1662–1672. https://doi.org/10.1002/polb.20470

    Article  CAS  Google Scholar 

  51. Gan Z, Kuwabara K, Abe H, Iwata T, Doi Y (2004) Metastability and Transformation of polymorphic crystals in biodegradable poly(butylene adipate). Biomacromolecules 5:371–378. https://doi.org/10.1021/bm0343850

    Article  CAS  PubMed  Google Scholar 

  52. Jiang Y, Woortman AJJ, van Alberda GOR, Petrović DM, Loos K (2014) Enzymatic synthesis of Biobased Polyesters using 2,5-Bis(hydroxymethyl)furan as the Building Block. Biomacromolecules 15:2482–2493. https://doi.org/10.1021/bm500340w

    Article  CAS  PubMed  Google Scholar 

  53. Honeycutt DS, Charbonneau WF, North AJ, Cobb SL, Lohmann D, Miri MJ (2022) Effects of alkyl and phenyl-substituted 1,3-propanediols on the synthesis and properties of polyesters with 2,5-furandicarboxylic acid. Polymer 242:124584. https://doi.org/10.1016/j.polymer.2022.124584

    Article  CAS  Google Scholar 

  54. Menard KP (2008) Dynamic mechanical analysis – a practical introduction, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  55. Li S, Huang J, Chen Z, Chen G, Lai Y (2017) A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications. J Mater Chem A 5:31–55. https://doi.org/10.1039/C6TA07984A

    Article  CAS  Google Scholar 

  56. Morgan A, Cocca M, Vega K, Fleischer A, Gupta SG, Mehan M, Takacs GA (2017) Vacuum UV photo-oxidation of poly(ethylene terephthalate. J Adhes Sci Technol 31:2542–2554. https://doi.org/10.1080/01694243.2017.1308994

    Article  CAS  Google Scholar 

  57. Hirotsu T, Tsujisaka T, Masuda T, Nakayama K (2000) Plasma surface treatments and biodegradation of poly (butylene succinate) sheets. J Appl Polym Sci 78:1121–1129. https://doi.org/10.1002/1097-4628(20001031)78:5%3c1121::AID-APP210%3e3.0.CO;2-H

    Article  CAS  Google Scholar 

  58. Hirotsu T, Nakayama K, Tagaki C, Watanabe CT (2004) Plasma surface treatments of melt-extruded uniaxial blend sheets of PLLA/PBS. J Photopolym Sci 17:179–171. https://doi.org/10.2494/photopolymer.17.179

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massoud J. Miri.

Ethics declarations

Conflicts of interests

The authors state that they have neither a conflict of interest nor a competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3267 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demyttenaere, S.M., Samonte, J.R., Reilly, L.T. et al. Aliphatic polyesters based on 1,4-butanediol and even numbered C4 - C20 dicarboxylic acids - synthesis and properties including after surface treatment by VUV photo-oxidation. J Polym Res 30, 331 (2023). https://doi.org/10.1007/s10965-023-03693-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03693-8

Keywords

Navigation