Skip to main content
Log in

Multiscale modeling of syndiospecific styrene polymerization

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A detailed mathematical model for syndiospecific styrene polymerization based on combining features of the multigrain model (MGM) and the polymeric multigrain model (PMGM). This model has been established to predict the radial monomer concentration within the growing macro particles and the rate of polymerization. The latter, the parameters, have an effect on the molecular weight distribution (MWD). In this model, the effect of intraparticle diffusion resistance and the radius of catalyst particles on the rate of polymerization and MWD were studied. The model simulation showed the presence of a large distribution of monomer concentration across the radius of particles. It was further noticed that the diffusion resistance was most intense at the beginning of the polymerization process. For MWD, the model simulation showed that the existence of diffusion resistance led to have an increase in the molecular weight within a period of time similar to the one needed in the catalyst decay. Moreover, the validation of the model with experimental data given a good agreement results and show that the model is able to predict a correct monomer profile, polymerization rate, particle growth factor and MWD, an algorithm, which embeds physicochemical effects, has been developed to model the industrial reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

Def,i :

Effective macroparticle diffusivity, at the ith grid point (cm2. min−1)

D1 :

Monomer diffusivity in pure polymer (cm2.min−1)

Ds :

Effective microparticle diffusion coefficient (cm2.min−1)

kp :

Propagation rate constant (L. mol−1 .hr−1)

kd :

Catalyst deactivation rate constant (hr−1)

ktM :

Chain transfer to monomer rate constant (L. mol−1 .hr−1)

k :

β—hydrogen elimination rate constant (hr−1)

k1 :

liquid film mass transfer coefficient (m2.s−1)

MM, i :

Monomer concentration in the macroparticle, at the ith grid point (mol.dm−3)

Mμ,i :

Monomer concentration in the microparticle, at the ith grid point (mol.dm−3)

Mb :

Bulk monomer concentration (mol.dm−3)

Mn :

Number average molecular weight (g.mol−1)

Mw :

Weight average molecular weight (g.mol−1)

(mw)sty :

Styrene Molecular weight (g.mol−1)

N:

Number of shell

r:

Radial position at the macroparticle level (m)

rs :

Radial position at the microparticle level (m)

Rc :

Radius of catalyst subparticles (m)

RN+2 :

Macroparticle radius (m)

Ro :

Initial particle radius (m)

Rh,i :

Radius of ith hypothetical shells

Rs,i :

Radius of microparticle at ith hypothetical shells

Rpv,i :

Rate of reaction per unit volume at the ith grid point (mol (m3.s)−1)

Vcs,i :

Volume of the ith hypothesis shell

Vcc,i :

Volume of catalyst in shell i

β:

Indicator of the monomer convection contribution

λPk :

kth Moment of live polymers

λMk :

kth moment of dead polymers

References

  1. Odian GG (2004) Principles of polymerization. Wiley-Interscience, Hoboken

    Book  Google Scholar 

  2. Schellenberg J (2010) Syndiotactic polystyrene: synthesis, characterization, processing, and applications. Wiley, Hoboken

    Google Scholar 

  3. He F-A, Zhang L-M, Yang F, Chen L-S, Wu Q (2006) New nanocomposites based on syndiotactic polystyrene and organo-modified ZnAl layered double hydroxide. J Polymer Res 13(6):483–493. doi:10.1007/s10965-006-9071-9

    Article  CAS  Google Scholar 

  4. Gao Y, Nie Z, Li H (2009) Synthesis of syndiotactic polystyrene-poly(ethylene glycol) copolymer by photochemical reaction. J Polymer Res 16(6):709–717. doi:10.1007/s10965-009-9277-8

    Article  CAS  Google Scholar 

  5. Gao Y, Li H-M, Liu F-S, Wang X-Y, Shen Z-G (2007) Synthesis and characterization of benzoylated syndiotactic polystyrene. J Polymer Res 14(4):291–296. doi:10.1007/s10965-007-9109-7

    Article  CAS  Google Scholar 

  6. Ishihara N, Seimiya T, Kuramoto M, Uoi M (1986) Crystalline syndiotactic polystyrene. Macromolecules 19(9):2464–2465. doi:10.1021/ma00163a027

    Article  CAS  Google Scholar 

  7. Ghosh S (2009) Influence of cocatalyst on the stereoselectivity and productivity of styrene polymerization reactions. J Polymer Res 16(2):117–124. doi:10.1007/s10965-008-9209-z

    Article  CAS  Google Scholar 

  8. Schmeal WR, Street JR (1971) Polymerization in expanding catalyst particles. AIChE J 17(5):1188–1197. doi:10.1002/aic.690170526

    Article  CAS  Google Scholar 

  9. Schmeal WR, Street JR (1972) Polymerization in catalyst particles: calculation of molecular weight distribution. J Polymer Sci: Polym Phys Ed 10(11):2173–2187. doi:10.1002/pol.1972.180101106

    CAS  Google Scholar 

  10. Nagel EJ, Kirillov VA, Ray WH (1980) Prediction of molecular weight distributions for high-density polyolefins. Ind Eng Chem Prod Res Dev 19(3):372–379. doi:10.1021/i360075a016

    Article  CAS  Google Scholar 

  11. Singh D, Merrill RP (1971) Molecular weight distribution of polyethylene produced by Ziegler-Natta Catalysts. Macromolecules 4(5):599–604. doi:10.1021/ma60023a017

    Article  CAS  Google Scholar 

  12. Galvan R, Tirrell M (1986) Orthogonal collocation applied to analysis of heterogeneous Ziegler-Natta polymerization. Comput Chem Eng 10(1):77–85

    Article  CAS  Google Scholar 

  13. Galvan R, Tirrell M (1986) Molecular weight distribution predictions for heterogeneous Ziegler-Natta polymerization using a two-site model. Chem Eng Sci 41(9):2385–2393

    Article  CAS  Google Scholar 

  14. Floyd S, Choi KY, Taylor TW, Ray WH (1986) Polymerization of olefins through heterogeneous catalysis. III. Polymer particle modelling with an analysis of intraparticle heat and mass transfer effects. J Appl Polym Sci 32(1):2935–2960. doi:10.1002/app.1986.070320108

    Article  CAS  Google Scholar 

  15. Floyd S, Choi KY, Taylor TW, Ray WH (1986) Polymerization of olefines through heterogeneous catalysis IV. Modeling of heat and mass transfer resistance in the polymer particle boundary layer. J Appl Polym Sci 31(7):2231–2265. doi:10.1002/app.1986.070310724

    Article  CAS  Google Scholar 

  16. Floyd S, Hutchinson RA, Ray WH (1986) Polymerization of olefins through heterogeneous catalysis—V. Gas-liquid mass transfer limitations in liquid slurry reactors. J Appl Polym Sci 32(6):5451–5479. doi:10.1002/app.1986.070320617

    Article  CAS  Google Scholar 

  17. Hutchinson RA, Chen CM, Ray WH (1992) Polymerization of olefins through heterogeneous catalysis X: modeling of particle growth and morphology. J Appl Polymer Sci 44(8):1389–1414. doi:10.1002/app.1992.070440811

    Article  CAS  Google Scholar 

  18. Sarkar P, Gupta SK (1991) Modelling of propylene polymerization in an isothermal slurry reactor. Polymer 32(15):2842–2852

    Article  CAS  Google Scholar 

  19. Sarkar P, Gupta SK (1992) Simulation of propylene polymerization: an efficient algorithm. Polymer 33(7):1477–1485

    Article  CAS  Google Scholar 

  20. Soares BPJ, Hamielec EA (1995) General dynamic mathematical modelling of heterogeneous Ziegler-Natta and metallocene catalyzed copolymerization with multiple site types and mass and heat transfer resistances, vol 3. vol 3. Dekker, New York, NY, ETATS-UNIS.

  21. Kanellopoulos V, Dompazis G, Gustafsson B, Kiparissides C (2004) Comprehensive analysis of single-particle growth in heterogeneous olefin polymerization: the random-pore polymeric flow model. Ind Eng Chem Res 43(17):5166–5180. doi:10.1021/ie030810u

    Article  CAS  Google Scholar 

  22. Chen Y, Liu X (2005) Modeling mass transport of propylene polymerization on Ziegler-Natta catalyst. Polymer 46(22):9434–9442

    Article  CAS  Google Scholar 

  23. Liu X (2007) Modeling and simulation of heterogeneous catalyzed propylene polymerization. Chin J Chem Eng 15(4):545–553

    Article  Google Scholar 

  24. Kanellopoulos V, Tsiliopoulou E, Dompazis G, Touloupides V, Kiparissides C (2007) Evaluation of the internal particle morphology in catalytic gas-phase olefin polymerization reactors. Ind Eng Chem Res 46(7):1928–1937. doi:10.1021/ie060721s

    Article  CAS  Google Scholar 

  25. Finlayson BA (1980) Nonlinear analysis in chemical engineering. McGraw-Hill International Book Co.,

  26. Han JJ, Lee HW, Yoon WJ, Choi KY (2007) Rate and molecular weight distribution modeling of syndiospecific styrene polymerization over silica-supported metallocene catalyst. Polymer 48(22):6519–6531

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Universiti Sains Malaysia (USM) for supporting this work under (USM) Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhairi A. Sata.

Appendix 1

Appendix 1

The changes in the shells volume, ∆Vi and the location of the grid points Ri with time are given in this section. As show in Fig. 2, the hypothetical shell can be defined as Rh,i−1 ≤ r ≤ Rh,i such that the entire polymer produced by the catalyst particles of radius Rc are accommodated in it . In the interval t to t+∆t, the total volume of polymer and the volume of micro particle produced at ith shell are given by:

$$ \frac{{{\text{d}}{{\text{V}}_{\text{i}}}}}{\text{dt}} = \frac{{0.001\,{{\text{k}}_{\text{p}}}{\text{C*}}\,{{\text{M}}_{{\mu, {\text{i}} + 1}}}\left( {{{\text{N}}_{\text{i}}}\frac{4}{3}\pi {\text{R}}_{\text{c}}^3} \right){\text{m}}{{\text{w}}_{\text{sty}}}}}{{{\rho_p}}} $$
(1.1)
$$ \frac{{{\text{d}}{{\text{V}}_{{{\text{s}},{\text{i}}}}}}}{\text{dt}} = \frac{{0.001\,{{\text{k}}_{\text{p}}}{\text{C*}}\,{{\text{M}}_{{\mu, {\text{i}}}}}\left( {\frac{4}{3}\pi {\text{R}}_{\text{c}}^3} \right){\text{m}}{{\text{w}}_{\text{sty}}}}}{{{\rho_p}}} $$
(1.2)

With Vi(t = 0) and VS,i(t = 0) being the initial total volume and volume of every polymer micro particle of ith volume, respectively.

$$ {{\text{V}}_{\text{i}}}({\text{t}} = 0) = \frac{{{{\text{N}}_{\text{i}}}\left( {\frac{4}{3}\pi {\text{R}}_{\text{c}}^3} \right)}}{{1 - \varepsilon }} $$
(1.3)
$$ {{\text{V}}_{{{\text{s}},{\text{i}}}}}\left( {{\text{t}} = 0} \right) = \frac{4}{3}\pi {\text{R}}_{\text{c}}^3 $$
(1.4)

We can now define the hypothetical shells at any time by:

$$ {{\text{R}}_{{{\text{h}},{\text{i}}}}} = {\left( {\frac{3}{{4\pi }}\mathop{\sum }\limits_{{{\text{j}} = 1}}^{\text{i}} {{\text{V}}_{\text{j}}}} \right)^{{1/3}}} $$
(1.5)

Where Rh,o = 0 and the radius of micro particle at ith shell being:

$$ {{\text{R}}_{{s,{\text{i}}}}} = {\left( {\frac{3}{{4\pi }}{{\text{V}}_{{{\text{s}},{\text{i}}}}}} \right)^{{\frac{1}{3}}}} $$
(1.6)

The catalyst particles are assumed to be placed at the mid points of each hypothetical shell. Thus:

$$ {{\text{R}}_{{1,{\text{i}}}}} = {{\text{R}}_{{{\text{h}},{\text{i}} - 1}}} + \frac{1}{2}\left( {{{\text{R}}_{{{\text{h}},{\text{i}}}}} - {{\text{R}}_{{{\text{h}},{\text{i}} - 1}}}} \right) $$
(1.7)

Then the computational grid points are related to R1,i by:

$$ {{\text{R}}_1} = 0 $$
(1.8)
$$ {{\text{R}}_2} = {{\text{R}}_{\text{c }}} $$
(1.9)
$$ {{\text{R}}_{{{\text{i}} + 1}}} = {{\text{R}}_{{1,{\text{i}}}}} + {{\text{R}}_{{{\text{s}},{\text{i}}}}} $$
(1.10)
$$ {{\text{R}}_{{{\text{N}} + 2}}} = {{\text{R}}_{{{\text{h}},{\text{N}}}}} $$
(1.11)

The values of ∆ri to be used in the equation (6a, b & c) are given by:

$$ \Delta {{\text{r}}_{\text{i}}} = {{\text{R}}_{{{\text{i}} + 1}}} - {{\text{R}}_{\text{i}}} $$
(1.12)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sultan, S.R., Fernando, W.J.N. & Sata, S.A. Multiscale modeling of syndiospecific styrene polymerization. J Polym Res 19, 9778 (2012). https://doi.org/10.1007/s10965-011-9778-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-011-9778-0

Keywords

Navigation