Skip to main content
Log in

Conducting carbon black filled NR/ IIR blend vulcanizates: Assessment of the dependence of physical and mechanical properties and electromagnetic interference shielding on variation of filler loading

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A series of natural rubber/ butyle rubber NR/ IIR (70/30) loaded with general purpose furnace (GPF) carbon black have been produced on a laboratory scale, and their electrical and mechanical properties were investigated. The percolation threshold concentration has been described using Kirkpatrick and Zallen model. The percolation model gives a suitable explanation, within the experimental data of the studied samples. The thermal stability of composites was also investigated. It was found that the stability of high filler content blend was better than that of low filler content, due to strong polymer-filler interaction at high filler concentrations. Variation of mechanical properties of carbon black-filled compounds with the filler content was also investigated. Electromagnetic interference (EMI) shielding characteristics of these composites were studied. The measurements of shielding effectiveness (SE) were carried out in different frequency ranges from 0.5–5 GHz and it increases with the increase in filler loading. SE values were in the range of 7–30 dB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ghosh P, Chakrabarti A (2000) Eur Polym J 36:1043. doi:10.1016/S0014-3057(99)00157-3

    Article  CAS  Google Scholar 

  2. Sichel EK (1982) Carbon black-polymer composites: the physics of electrically conducting composites. Marcel Dekker, New York

    Google Scholar 

  3. Kim SH, Jang SH, Byun SW, Lee JY, Joo JS, Jeong SH, Park MJ (2003) J Appl Polym Sci 87:1969. doi:10.1002/app.11566

    Article  CAS  Google Scholar 

  4. Norman RH (1970) Electrically conducting rubber composite. England, Elsevier

    Google Scholar 

  5. Lonergan MC, Severin EJ, Doleman BJ, Beaber SA, Grubbs RH, Lewis NS (1996) Chem Mater 8:2298. doi:10.1021/cm960036j

    Article  CAS  Google Scholar 

  6. El-Tantawy F, Dishovsky N (2004) J Appl Polym Sci 91:2756. doi:10.1002/app.13458

    Article  CAS  Google Scholar 

  7. Vittibua C, Koon NC, Lubits P, Geopegan JA (1984) J Appl Phys 55:1741. doi:10.1063/1.333461

    Article  Google Scholar 

  8. Chung DDL (2001) Carbon 39:279. doi:10.1016/S0008-6223(00)00184-6

    Article  CAS  Google Scholar 

  9. Das NC, Khastgir D, Chaki TK, Chakraborty A (2000) Composites Part A 31:1069. doi:10.1016/S1359-835X(00)00064-6

    Article  Google Scholar 

  10. Shaojina J, Pingkaia J, Zhichengc Z, Zhongguang W (2006) Radiat Phys Chem 75:524. doi:10.1016/j.radphyschem.2005.11.004

    Article  Google Scholar 

  11. Song Y, Zheng Q (2006) Compos Sci Technol 66:907. doi:10.1016/j.compscitech.2005.07.041

    Article  CAS  Google Scholar 

  12. Zhanga B, Zhoua Y, Wanga N, Lianga X, Guana Z, Takada T (2005) J Electrost 63:657. doi:10.1016/j.elstat.2005.03.056

    Article  Google Scholar 

  13. Madani M (2004) Polym. Polym. Compos 17:525

    Google Scholar 

  14. Zohdy MH, Madani M, Abd El-Ghaffar MA, Mac J (2004) Sci Part A 41:1321

    Article  Google Scholar 

  15. Shekhar S, Prasad V, Subramanyam SV (2006) Carbon 44:334. doi:10.1016/j.carbon.2005.07.018

    Article  CAS  Google Scholar 

  16. Miyasaka K, Watanabe K, Jojima E, Aida H, Sumita M, Ishikawa K (1982) J Mater Sci 17:1610. doi:10.1007/BF00540785

    Article  CAS  Google Scholar 

  17. Yi X-S, Wu G, Ma D (1998) J Appl Polym Sci 67:131. doi:10.1002/(SICI)1097-4628(19980103)67:1<131::AID-APP15>3.0.CO;2-4

    Article  CAS  Google Scholar 

  18. Kost J, Foux A, Narkis M (1994) Polym Engng Sci 34:1628. doi:10.1002/pen.760342108

    Article  CAS  Google Scholar 

  19. Wang Y, Zhang B (2005) J Appl Polym Sci 98:2149. doi:10.1002/app.22387

    Article  Google Scholar 

  20. Das NC, Chaki TK, Khastgir D (2003) J Appl Polym Sci 90:2073. doi:10.1002/app.12811

    Article  CAS  Google Scholar 

  21. Lux F (1993) J Mater Sci 28:285. doi:10.1007/BF00357799

    Article  CAS  Google Scholar 

  22. Kirkpatrick S (1973) Rev Mod Phys 45:574. doi:10.1103/RevModPhys.45.574

    Article  Google Scholar 

  23. Zallen R (1985) The physics of amorphous solids. Wiley, New York

    Google Scholar 

  24. Flandin L, Hiltner A, Baer E (2001) Polymer (Guildf) 42:827. doi:10.1016/S0032-3861(00)00324-4

  25. Zhang J, Feng S, Wang X (2004) J Appl Polym Sci 94:587. doi:10.1002/app.20721

    Article  CAS  Google Scholar 

  26. Sau KP, Chaki TK, Khastgir D (1997) J Mater Sci 32:5717. doi:10.1023/A:1018613600169

    Article  CAS  Google Scholar 

  27. Sichel EK (1982). Editor, “Carbon Black-Polymer Composites: The Physics of Electrical Conducting Composites”; Marcel Dekker, New York.

  28. Elwy A, Badawy MM, Nasr GM (1996) Polym Degrad Stabil 53:289. doi:10.1016/0141-3910(96)00090-0

    Article  Google Scholar 

  29. Das NC, Chaki TK, Khastgir D, Chakraborty A (2000) Polym. Polym Compos 8:395

    CAS  Google Scholar 

  30. Huang JC, Huang HL (1997) J Polym Engneer 17:213

    Google Scholar 

  31. Treloar LRG (1975) The Physics Of Rubber Elasticity, 3rd edn. Clarendon Press, Oxford

    Google Scholar 

  32. Kurian T, De PP, Khastgir D, Tripathy DK, De V, Peiffer DG (1995) Polymer (Guildf) 36:3875. doi:10.1016/0032-3861(95)99781-O

    Article  CAS  Google Scholar 

  33. Smallwood HM (1944) J Appl Phys 15:758. doi:10.1063/1.1707385

    Article  CAS  Google Scholar 

  34. Kontou E, Spathis G (1990) J Appl Polym Sci 39:649. doi:10.1002/app.1990.070390315

    Article  CAS  Google Scholar 

  35. Jing X, Wang Y, Zhang B (2005) J Appl Polym Sci 98:2149. doi:10.1002/app.22387

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Thanks are due to Dr./ K.A.A. Sharshar for providing us with his EMI set-up.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Madani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madani, M. Conducting carbon black filled NR/ IIR blend vulcanizates: Assessment of the dependence of physical and mechanical properties and electromagnetic interference shielding on variation of filler loading. J Polym Res 17, 53–62 (2010). https://doi.org/10.1007/s10965-009-9289-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-009-9289-4

Keywords

Navigation