Skip to main content
Log in

Synthesis, characterization and properties of halogen-free flame retardant PMMA nanocomposites containing nitrogen/ silicon prepared from the Sol-Gel method

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The investigation addresses the feasibility of preparing PMMA hybrid. MMA reacted with MA using AIBN initiator to form the copolymer in a free radical reaction. APTS was then reacted with the copolymer to synthesize the precursor, which has an OEt functional group and thus participates in the sol-gel reaction. HMMM and TEOS were added to the precursor to form networks with an organic-inorganic structure by the sol-gel method. FTIR was adopted to monitor the curing of the hybrid and NMR was employed to characterize the structure of the composites. The results demonstrate that the sol-gel reaction proceeded completely, and that networks had formed. SEM and EDS were applied to observe the morphology of nanocomposites and the particles were smaller than 100 nm. Accordingly, the nanocomposites had been successfully prepared. UV/vis spectroscopy was utilized to evaluate the transparency of nanocomposites and the results demonstrate that the composites have high transparency. Hence, the organic and inorganic phases are highly mutually compatible. TGA and LOI were applied to elucidate the thermal properties and flame retardance. The data indicate that the composites exhibited excellent thermal stability and flame retardance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mark HF, Bikales NM, Overberger CG, Menges G (1985) Encyopaedia of polymer science and technology. John Wiley and Sons, New York

    Google Scholar 

  2. Lee CH, Chien AT, Yen MH, Lin KF (2008) J Polym Res 15:331 doi:10.1007/s10965-008-9175-5

    Article  CAS  Google Scholar 

  3. Laachachi A, Cochez M, Leroy E, Ferriol M, Lopez-Cuesta JM (2007) Polym Degrad Stabil 92:61 doi:10.1016/j.polymdegradstab.2006.09.011

    Article  CAS  Google Scholar 

  4. Laachachi A, Cochez M, Leroy E, Gaudon P, Ferriol M, Lopez-Cuesta JM (2006) Polym Adv Technol 17:327 doi:10.1002/pat.690

    Article  CAS  Google Scholar 

  5. Laachachi A, Cochez M, Ferriol M, Lopez-Cuesta JM, Leroy E (2005) Mater Lett 59:36 doi:10.1016/j.matlet.2004.09.014

    Article  CAS  Google Scholar 

  6. Laachachi A, Cochez M, Ferriol M, Leroy E, Lopez-Cuesta JM, Oget N (2004) Polym Degrad Stabil 85:641 doi:10.1016/j.polymdegradstab.2004.03.003

    Article  CAS  Google Scholar 

  7. Denq BL, Hu YS, Chiu WY, Chen LW, Chiu YS (1997) Polym Degrad Stabil 57:269 doi:10.1016/S0141-3910(97)00006-2

    Article  CAS  Google Scholar 

  8. Wilkie CA, Leone JT, Mittleman ML (1991) J Appl Polym Sci 42:1133 doi:10.1002/app.1991.070420427

    Article  CAS  Google Scholar 

  9. Hodgkinson JM, Briffa JA, Williams JG (1979) Plast Rub Mater Appl 4:133

    CAS  Google Scholar 

  10. Xingna M, You B, Zhou S, Wu L (2004) Polymer (Guildf) 45:2967 doi:10.1016/j.polymer.2004.02.043

    Article  CAS  Google Scholar 

  11. Duquesne S, Michel LB, Bourbigot S, Delobel R, Vezin H, Camino G, Berend E, Lindsay C, Roels T (2007) Fire Mater 27:103 doi:10.1002/fam.812

    Article  CAS  Google Scholar 

  12. Sen AK, Mukheriece B, Bhattacharya AS, Sanghi LK, De PP, Bhowmick K (1991) J Appl Polym Sci 43:1673 doi:10.1002/app.1991.070430910

    Article  CAS  Google Scholar 

  13. Zheng XT, Wu DM, Meng QY, Wang KJ, Liu Y, Wan L, Ren DY (2008) J Polym Res 15:59 doi:10.1007/s10965-007-9141-7

    Article  CAS  Google Scholar 

  14. Liu M, Guo B, Du M, Lei Y, Jia D (2008) J Polym Res 15:205 doi:10.1007/s10965-007-9160-4

    Article  CAS  Google Scholar 

  15. Zhang F, Lei X, Su Z, Zhang H (2008) J Polym Res 15:319 doi:10.1007/s10965-007-9173-z

    Article  CAS  Google Scholar 

  16. Chen-Yang YW, Yang HC, Li GJ, Li YK (2005) J Polym Res 11:275 doi:10.1007/s10965-005-3982-8

    Article  Google Scholar 

  17. Chuang TH, Guo WJ, Cheng KC, Chen SW, Wang HT, Yen YY (2004) J Polym Res 11:169 doi:10.1023/B:JPOL.0000043401.38140.58

    Article  CAS  Google Scholar 

  18. Shao CH, Wang TZ, Chen GN, Chen KJ, Yeh JT, Chen KN (2000) J Polym Res 7:41 doi:10.1007/s10965-006-0102-3

    Article  CAS  Google Scholar 

  19. Chiang WY, Hu CH (2000) J Polym Res 7:15 doi:10.1007/s10965-006-0099-7

    Article  CAS  Google Scholar 

  20. Chuang TH, Chern CK, Guo WJ (1997) J Polym Res 4:153 doi:10.1007/s10965-006-0020-4

    Article  CAS  Google Scholar 

  21. Price D, Pyrah K, Hull TR, Milnes GJ, Ebdon JR, Hunt BJ, Joseph P (2002) Polym Degrad Stabil 77:227 doi:10.1016/S0141-3910(02)00038-1

    Article  CAS  Google Scholar 

  22. Gentilhomme A, Cochez M, Ferriol M, Oget N, Mieloszynski JL (2003) Polym Dedra Stab 82:347 doi:10.1016/S0141-3910(03)00207-6

    Article  CAS  Google Scholar 

  23. Mehrotra RC (1992) In chemistry, spectroscopy and applications of sol-gel glasses. Reisfeld R, Jorgensen CK EDs. Springer Verlag, Berlin

  24. Que W, Jia CY, Sun M, Sun Z, Wang LL, Zhang ZJ (2008) Opt Express 16:3490 doi:10.1364/OE.16.003490

    Article  CAS  Google Scholar 

  25. Sarwar MI, Zulfiqar S, Ahmad Z (2008) J Sol-Gel Sci Technol 45:89 doi:10.1007/s10971-007-1640-9

    Article  CAS  Google Scholar 

  26. Chang RC, Chiang CL, Chiu YC (2007) J Appl Polym Sci 106:3290 doi:10.1002/app.26994

    Article  CAS  Google Scholar 

  27. Tsai MH, Huang SL, Chiang PC, Chen CJ (2007) J Appl Polym Sci 106:3185 doi:10.1002/app.26830

    Article  CAS  Google Scholar 

  28. Joseph R, Zhang S, Ford WT (1996) Macromolecules 29:1305 doi:10.1021/ma951111z

    Article  CAS  Google Scholar 

  29. Chang TC, Wang YT, Hong YS, Chiu YS (2000) J Polym Sci Part Polym Chem 38:1972 doi:10.1002/(SICI)1099-0518(20000601)38:11<1972::AID-POLA60>3.0.CO;2-5

    Article  CAS  Google Scholar 

  30. Song X, Wang X, Wang H, Zhong W, Du Q (2008) Mater Chem Phys 109:143

    CAS  Google Scholar 

  31. Hsiue GH, Liu YL, Tsiao J (2000) J Appl Polym Sci 78:1 doi:10.1002/1097-4628(20001003)78:1<1::AID-APP10>3.0.CO;2-0

    Article  CAS  Google Scholar 

  32. Hsiue GH, Liu YL, Liao HH (2001) J Polym Sci Part Polym Chem 39:986 doi:10.1002/1099-0518(20010401)39:7<986::AID-POLA1074>3.0.CO;2-W

    Article  CAS  Google Scholar 

  33. Shieh JY, Wang CS (2001) Polymer (Guildf) 42:7617 doi:10.1016/S0032-3861(01)00257-9

    Article  CAS  Google Scholar 

  34. Wang CS, Lin CH (1999) J Polym Sci Part Polym Chem 37:3903 doi:10.1002/(SICI)1099-0518(19991101)37:21<3903::AID-POLA4>3.0.CO;2-X

    Article  CAS  Google Scholar 

  35. Chen-Yang YW, Lee HF, Yuan CY (2000) J Polym Sci Part Polym Chem 38:972 doi:10.1002/(SICI)1099-0518(20000315)38:6<972::AID-POLA6>3.0.CO;2-N

    Article  CAS  Google Scholar 

  36. Doyle CD (1961) Anal Chem 33:77 doi:10.1021/ac60169a022

    Article  CAS  Google Scholar 

  37. Jelena M, Ivan B, Sebastijan O, Hrvoje I, Marica I (2006) Polym Dedra Stab 91:122 doi:10.1016/j.polymdegradstab.2005.04.024

    Article  CAS  Google Scholar 

  38. Park SJ, Kim HC, Lee HI, Suh DH (2001) Macromolecules 34:7573 doi:10.1021/ma010792x

    Article  CAS  Google Scholar 

  39. Bibiao J, Jianjun H, Wenyun W, Luxia J, Xinxian C (2001) Eur Polym J 37:463 doi:10.1016/S0014-3057(00)00147-6

    Article  CAS  Google Scholar 

  40. Ren Q, Li A, Jiang B, Zhang D, Chen J (2004) J Appl Polym Sci 94:2425 doi:10.1002/app.21184

    Article  CAS  Google Scholar 

  41. Camino G, Costa L, Martinasso G (1989) Polym Degrad Stabil 23:359 doi:10.1016/0141-3910(89)90058-X

    Article  CAS  Google Scholar 

  42. Wu CS, Liu YL, Chiu YS (2002) Polymer (Guildf) 43:4277 doi:10.1016/S0032-3861(02)00234-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their appreciation to the National Science Council of the Republic of China for financial support of this study under grant NSC-96-2622-E-241-003-CC3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin-Lung Chiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiang, CL., Chiu, SL. Synthesis, characterization and properties of halogen-free flame retardant PMMA nanocomposites containing nitrogen/ silicon prepared from the Sol-Gel method. J Polym Res 16, 637–646 (2009). https://doi.org/10.1007/s10965-009-9268-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-009-9268-9

Keyword

Navigation