Skip to main content
Log in

FINITE ELEMENTS IN ORDERED BANACH SPACES WITH POSITIVE BASES

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We characterize finite elements, an order-theoretic concept in Archimedean vector lattices, in the setting of ordered Banach spaces with positive unconditional basis as vectors having finite support with respect to their basis representations. Using algebraic vector space bases, we further describe a class of infinite dimensional vector lattices in which each element is finite and even self-majorizing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable

References

  1. F. Albiac and N. J. Kalton, Topics in Banach space theory, Springer-Verlag, Berlin, Heidelberg, New York, 2006.

    Google Scholar 

  2. C. D. Aliprantis and K. C. Border, Infinite dimensional analysis, Springer-Verlag, Berlin, Heidelberg, New York, 1999.

    Book  Google Scholar 

  3. C. D. Aliprantis, D. J. Brown and O. Burkinshaw, Existence and optimality of competitive equilibria, Springer-Verlag, Heidelberg, New York, 1990.

    Book  Google Scholar 

  4. C. D. Aliprantis, D. J. Brown, I. A. Polyrakis and J. Werner. Portfolio dominance and optimality in infinite security markets, Journal of Mathematical Economics, 30:347–366, 1998.

    Article  MathSciNet  Google Scholar 

  5. C. D. Aliprantis, D. J. Brown, I. A. Polyrakis and J. Werner. Yudin cones and inductive limit topologies, Atti Sem. Mat. Fis. Univ. Modena, XLVI:389–412, 1998.

    MathSciNet  Google Scholar 

  6. C. D. Aliprantis and O. Burkinshaw, Positive operators, Academic Press, New York, London, 1985.

    Google Scholar 

  7. C. D. Aliprantis and R. Tourky. Cones and duality, Amer. Math. Soc., Providence, RI, 2007.

    Book  Google Scholar 

  8. J. Bonet and W. J. Ricker. Fréchet and (LB) sequence spaces induced by dual Banach spaces of discrete Cesàro spaces, Bull. Belg. Math. Soc. Simon Stevin, 28(1):1–19, 2021.

    Article  MathSciNet  Google Scholar 

  9. Z. L. Chen and M. R. Weber, On finite elements in vector lattices and Banach lattices, Math. Nachr., 279(5-6):495-501, 2006.

    Article  MathSciNet  Google Scholar 

  10. Z. L. Chen and M. R. Weber, On finite elements in sublattices of Banach lattices, Math. Nachr., 280(5-6):485-494, 2007.

    Article  MathSciNet  Google Scholar 

  11. Z. L. Chen and M. R. Weber, On finite elements in lattices of regular operators, Positivity, 11:563-574, 2007.

    Article  MathSciNet  Google Scholar 

  12. G. P. Curbera and W. J. Ricker, Solid extensions of the Cesàro operator on lp and c0 , Integral Eqn. Oper. Theory, 80(1):61–77, 2014.

    Article  Google Scholar 

  13. I. Daubechies, Ten Lectures on Wavelets, Philadelphia, PA: Society for Industrial and Applied Mathematics, 1992.

    Book  Google Scholar 

  14. U. Gönüllü, F. Polat and M. R. Weber, Cesàro vector lattices and their ideals of finite elements, Positivity, 27, 2023. https://doi.org/10.1007/s11117-023-00977-7.

  15. U. Gönüllü, F. Polat and M. R. Weber, Duals of Cesàro sequence vector lattices, Cesàro sums of Banach lattices and their ideals of finite elements, Archiv der Mathematik, 120(6): 619-630, 2023.

    Article  MathSciNet  Google Scholar 

  16. M. I. Kadets and V. M. Kadets, Series in Banach spaces: Conditional and unconditional convergence, Birkhäuser-Verlag, Basel, Boston, Berlin, 1997.

    Google Scholar 

  17. V. Katsikis and I. A. Polyrakis. Positive bases in ordered subspaces with the Riesz decomposition property, Studia Mathematica 174(3):233–253, 2006.

    Article  MathSciNet  Google Scholar 

  18. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I and II, Springer-Verlag, Berlin, New York, 1997.

    Google Scholar 

  19. B. M. Makarow and M. R. Weber, Über die Realisierung von Vektorverbänden I (Russian), Math. Nachr., 60:281-296, 1974.

    MathSciNet  Google Scholar 

  20. H. Malinowski and M. R. Weber, On finite elements in f-algebras and product algebras, Positivity, 17:819-840, 2013.

    Article  MathSciNet  Google Scholar 

  21. R. E. Megginson, An introduction to Banach space theory, Springer-Verlag, New York, Berlin, Heidelberg, 1998.

    Book  Google Scholar 

  22. M. A. Pliev and M. R. Weber, Finite elements in some vector lattices of nonlinear operators, Positivity, 22(1):245–260, 2018.

    Article  MathSciNet  Google Scholar 

  23. I. A. Polyrakis. Lattice-subspaces and positive bases. An application in economics, Atti Sem. Mat. Fis. Univ. Modena, L:327–348, 2002.

  24. K. Teichert and M. R. Weber, On self-majorizing elements in Archimedean vector lattices, Positivity, 18:823–837, 2014.

    Article  MathSciNet  Google Scholar 

  25. M. R. Weber, On finite and totally finite elements in vector lattices, Analysis Mathematica, 21:237–244, 1995.

    Article  ADS  MathSciNet  Google Scholar 

  26. M. R. Weber, Finite elements in vector lattices, de Gruyter, Berlin, Boston, 2014.

    Book  Google Scholar 

  27. A. E. Zaanen, Introduction to operator theory in Riesz spaces, Springer-Verlag, Berlin, Heidelberg, 1997.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Heinecke.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

The authors dedicate this paper to Prof. A. G. Kusraev on the occasion of his seventieth birthday.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heinecke, A., Weber, M.R. FINITE ELEMENTS IN ORDERED BANACH SPACES WITH POSITIVE BASES. J Math Sci 271, 708–713 (2023). https://doi.org/10.1007/s10958-023-06623-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-023-06623-7

Keywords

Navigation