Skip to main content
Log in

On self-majorizing elements in Archimedean vector lattices

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

A finite element in an Archimedean vector lattice is called self-majorizing if its modulus is a majorant. Such elements exist in many vector lattices and naturally occur in different contexts. They are also known as semi-order units as the modulus of a self-majorizing element is an order unit in the band generated by the element. In this paper the properties of self-majorizing elements are studied systematically, and the relations between the sets of finite, totally finite and self-majorizing elements of a vector lattice are provided. In a Banach lattice an element \(\varphi \) is self-majorizing , if and only if the ideal and the band both generated by \(\varphi \) coincide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The formulation of Theorem 1 in [6] has to be corrected: \(E\) and \(F\) have to be Banach lattices.

  2. And to avoid unsuitable vector lattices with no proper maximal ideals at all, see e.g., [11], Example 27.8.

References

  1. Abramovich, Y.A., Aliprantis, C.D.: An Invitation to Operator Theory, vol. 50. American Mathematical Society, Graduate Studies in Mathematics, Providence (2002)

    MATH  Google Scholar 

  2. Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis. Springer, Berlin, Heidelberg, New York (1994)

    Book  MATH  Google Scholar 

  3. Aliprantis, C.D., Burkinshaw, O.: Positive Operators. Academic Press Inc., London (1985)

    MATH  Google Scholar 

  4. Chen, Z.L., Weber, M.R.: On finite elements in vector lattices and Banach lattices. Math. Nachrichten 279(5–6), 495–501 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen, Z.L., Weber, M.R.: On finite elements in sublattices of Banach lattices. Math. Nachrichten 280(5–6), 485–494 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen, Z.L., Weber, M.R.: On finite elements in lattices of regular operators. Positivity 11, 563–574 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Feldman, W.A., Porter, J.F.: Order units and base norms generalized for convex spaces. Proc. Lond. Math. Soc. (3) 33(2), 299–312 (1976)

    Google Scholar 

  8. Hahn, N., Hahn, S., Weber, M.R.: On finite elements in vector lattices of operators. Positivity 13(1), 145–163 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kist, J.E.: Indecomposible maximal ideals of partially ordered vector spaces. J. Lond. Math. Soc. 34, part 4(144), 436–438 (1961)

    Article  MathSciNet  Google Scholar 

  10. Luxemburg, W.A.J., Moore Jr, L.C.: Archimedean quotient Riesz spaces. Duke Math. J. 34, 725–739 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  11. Luxemburg, W.A.J., Zaanen, A.C.: Riesz Spaces I. North Holland, Amsterdam (1971)

    MATH  Google Scholar 

  12. Makarow, B.M., Weber, M.: Über die Realisierung von Vektorverbänden I. (Russian). Math. Nachrichten 60, 281–296 (1974)

    Article  Google Scholar 

  13. Makarow, B.M., Weber, M.: Einige Untersuchungen des Raumes der maximalen Ideale eines Vektorverbandes mit Hilfe finiter Elemente I. Math. Nachrichten 79, 115–130 (1977)

    Google Scholar 

  14. Makarow, B.M., Weber, M.: Einige Untersuchungen des Raumes der maximalen Ideale eines Vektorverbandes mit Hilfe finiter Elemente II. Math. Nachrichten 80, 115–125 (1977)

    Google Scholar 

  15. Makarow, B.M., Weber, M.: Über die Realisierung von Vektorverbänden III. Math. Nachrichten 86, 7–14 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  16. Malinowski, H., Weber, M.R.: On finite elements in \(\ell \)-algebras and in product algebras. Positivity 17, 819–849 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  17. Meyer-Nieberg, P.: Banach Lattices. Springer, Berlin, Heidelberg, New York (1991)

    Book  MATH  Google Scholar 

  18. Veber. M.: The realization of K-lineals with a countable fundamental sequence of intervals (Russian). Vestnik Leningrad Univ. 7, 152–154 (1973)

    Google Scholar 

  19. Veksler, A.I.: Linear lattices with a sufficient set of maximal (l)-ideals (Russian). Mat. Sornik (N.S.) 64(106), 205–222 (1964)

    Google Scholar 

  20. Weber, M.: Über die Realisierung von Vektorverbänden II. Math. Nachrichten 65, 165–177 (1975)

    Article  MATH  Google Scholar 

  21. Weber, M.R.: On finite and totally finite elements in vector lattices. Anal. Math. 21, 237–244 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  22. Weber, M.R.: Finite Elements in Vector Lattices. In: Proceedings of the Conference Positivity IV, Dresden, pp. 155–172 (2006)

  23. Zaanen, A.C.: Introduction to Operator Theory in Riesz Spaces. Springer, Berlin, Heidelberg, New York (1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin R. Weber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teichert, K., Weber, M.R. On self-majorizing elements in Archimedean vector lattices. Positivity 18, 823–837 (2014). https://doi.org/10.1007/s11117-014-0278-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-014-0278-4

Keywords

Mathematics Subject Classification (2000)

Navigation