Skip to main content
Log in

Enhanced Dynkin Diagrams Done Right

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

The Dynkin–Minchenko construction of enhanced Dynkin diagram is slightly modified to construct signed enhanced Dynkin diagrams of exceptional type Φ = E6, E7, E8. It is observed that these diagrams contain as subdiagrams all Carter–Stekolshchik diagrams of conjugacy classes of the Weyl groups W(Φ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Arnold, “Polymathematics, is Mathematics a single Science or a set of Arts,” 1–15 (2000).

  2. J. C. Baez, “The octonions,” Bull. Amer. Math. Soc., 39, No. 2, 145–205 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Bala and R. W. Carter, “Classes of unipotent elements in simple algebraic groups. II,”Math. Proc. Camb. Philos. Soc., 80, 1–18 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  4. N. Bourbaki, “Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: Systèmes de racines,” Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris (1968).

  5. R. W. Carter, “Conjugacy classes in the Weyl group,” in: Seminar on Algebraic Groups and Related Finite Groups, Springer, Berlin (1970), pp. 297–318.

    Chapter  Google Scholar 

  6. R. W. Carter, “Conjugacy classes in the Weyl group,” Compos. Math., 25, No. 1, 1–59 (1972).

    MathSciNet  MATH  Google Scholar 

  7. E. B. Dynkin, “Semisimple subalgebras of semisimple Lie algebras,” Amer. Math. Soc. Transl., 6, 111–244 (1957).

    MATH  Google Scholar 

  8. E. B. Dynkin and A. N. Minchenko, “Enhanced Dynkin diagrams and Weyl orbits,” Transform. Groups, 15, No. 4, 813–841 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  9. J. S. Frame, “The classes and representations of the groups of 27 lines and 28 bitangents,” Ann. Mat. Pura Appl., 32, No. 4, 83–119 (1951).

    Article  MathSciNet  MATH  Google Scholar 

  10. J. S. Frame, “The characters of the Weyl group E8,” in: J. Leech (ed.), Computational Problems in Abstract Algebra, Oxford (1967), pp. 111–130.

  11. M. Geck and G. Pfeiffer, Characters of Finite Coxeter Groups and Iwahori–Hecke Algebras, Clarendon Press, Oxford (2000).

  12. A. Harebov and N. Vavilov, “On the lattice of subgroups of Chevalley groups containing a split maximal torus,” Commun. Algebra, 24, No. 1, 109–133 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  13. V. V. Kornyak, “Quantization in discrete dynamical systems,” J. Math. Sci., 168, No. 3, 390–397 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  14. G. Lusztig, “From conjugacy classes in the Weyl group to unipotent classes,” Represent. Theory, 15, 494–530 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  15. Yu. I. Manin, Cubic forms: algebra, geometry, arithmetic, North-Holland Mathematical Library, 4, North-Holland Publishing Co., American Elsevier Publishing Co., Amsterdam- London, New York (1974).

    Google Scholar 

  16. L. Manivel, “Configurations of lines and models of Lie algebras,” J. Algebra, 304, No. 1, 457–486 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  17. J. McKee and C. Smyth, “Integer symmetric matrices having all their eigenvalues in the interval [2, 2],” J. Algebra, 317, No. 1, 260–290 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  18. J. McKee and C. Smyth, “Symmetrizable integer matrices having all their eigenvalues in the interval [2, 2],” Algebr. Comb., 3, No. 3, 775–789 (2020).

  19. V. Migrin and N. Vavilov, “Exceptional uniform polytopes of the E6, E7 and E8 symmetry types,” Polynomial Comput. Algebra, St.Petersburg, 1–23 (2021).

    Google Scholar 

  20. T. Oshima, “A classification of subsystems of a root system,” arXiv: math/0611904v4 [math RT] (2007).

  21. V. Petrov, “A rational construction of Lie algebras of type E7,” J. Algebra 481, 348–361 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  22. T. A. Springer, “Regular elements of finite reflection groups,” Invent. Math., 25, 159–198 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  23. R. Stekolshchik, “Root systems and diagram calculus. I. Regular extensions of Carter diagrams and the uniqueness of conjugacy classes,” arXiv:1005.2769v6 [math.RT] (2012).

  24. R. Stekolshchik, “Root systems and diagram calculus. II. Quadratic forms for the Carter diagrams,” arXiv:1010.5684v7 [math.RT] (2011).

  25. R. Stekolshchik, “Root systems and diagram calculus. III. Semi-Coxeter orbits of linkage diagrams and the Carter theorem,” arXiv:1105.2875v3 [math.RT] (2011).

  26. R. Stekolshchik, “Equivalence of Carter diagrams,” Algebra Discrete Math., 23, No. 1, 138–179 (2017).

    MathSciNet  MATH  Google Scholar 

  27. N. A. Vavilov, “Do it yourself structure constants for Lie algebras of types El,” J. Math. Sci., 120, No. 4, 1513–1548 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  28. N. A. Vavilov, “Numerology of square equations,” St. Petersburg Math. J., 20, No. 5, 687–707 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  29. N. A. Vavilov, “Some more exceptional numerology,” J. Math. Sci., 171, No. 3, 317–321 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  30. N. A. Vavilov and N. P. Kharchev, “Orbits of the subsystem stabilizers,” J. Math. Sci., 145, No. 1, 4751–4764 (2007).

    Article  MathSciNet  Google Scholar 

  31. N. A. Vavilov and A. A. Semenov, “Long root tori in Chevalley groups,” St. Petersburg Math. J., 24, No. 3, 387–430 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  32. N. Wallach, “On maximal subsystems of root systems,” Canad. J. Math., 20, 555–574 (1968).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Vavilov.

Additional information

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 500, 2022, pp. 11–29.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vavilov, N.A., Migrin, V.V. Enhanced Dynkin Diagrams Done Right. J Math Sci 272, 349–361 (2023). https://doi.org/10.1007/s10958-023-06429-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-023-06429-7

Navigation