Skip to main content
Log in

Orbits of subsystem stabilizers

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Let Φ be a reduced irreducible root system. We consider pairs (S, X (S)), where S is a closed set of roots, X(S) is its stabilizer in the Weyl group W(Φ). We are interested in such pairs maximal with respect to the following order: (S1, X (S1)) ≤ (S2, X (S2)) if S1 ⊆ S2 and X(S1) ≤ X(S2). The main theorem asserts that if Δ is a root subsystem such that (Δ, X (Δ)) is maximal with respect to the above order, then X (Δ) acts transitively both on the long and short roots in Φ \ Δ. This result is a wide generalization of the transitivity of the Weyl group on roots of a given length. Bibliography: 23 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Borel and J. Tits, “Unipotent elements and parabolic subgroups in reductive groups. I [Russian translation],” Matematica, 12, 97–104 (1971).

    MathSciNet  Google Scholar 

  2. N. Bourbaki, Lie Groups and Algebras [Russian translation], Chaps. IV-VI, Mir, Moscow 1972).

    Google Scholar 

  3. N. A. Vavilov, “Maximal subgroups of Chevalley groups which contain a split maximal torus,” in: Rings and Modules, Leningrad (1986), pp. 67–75.

  4. N. A. Vavilov, “Weight elements of Chevalley groups,” Dokl. AN SSSR, 298, No. 3, 524–527 (1988).

    Google Scholar 

  5. N. A. Vavilov, “Conjugacy theorems for subgroups of extended Chevalley groups which contain a split maximal torus, Dokl. AN SSSR, 299, No. 2, 269–272 (1988).

    MathSciNet  Google Scholar 

  6. N. A. Vavilov, “Subgroups of Chevalley groips which contain a maximal torus,” Trudy Leningr. Mat. Obshch., 1, 64–109 (1990).

    MATH  MathSciNet  Google Scholar 

  7. N. A. Vavilov, “Unipotent elements in the subgroups of extended Chevalley groups that contain a split maximal torus,” Dokl. RAN, 328, No. 5, 536–539 (1993).

    MathSciNet  Google Scholar 

  8. N. A. Vavilov, A. Yu. Luzgarev, and I. M. Pevzner, “Chevalley groups of type E 6 in the 27-dimensional representation,” this issue, 5–68.

  9. N. A. Vavilov and A. A. Semenov, “Long root semisimple elements in Chevalley groups,” Dokl. RAN, 338, No. 6, 725–727 (1994).

    Google Scholar 

  10. E. B. Vinberg and A. G. Elashvili, “Classification of trivectors in the nine-dimensional space,” Trudy Semin. Vekt. Analisis, 18, 197–233 (1978).

    MathSciNet  Google Scholar 

  11. E. B. Dynkin, “Semisimple subalgebras of semisimple Lie algebras,” Mat. Sb., 30, No. 2, 349–362 (1952).

    MathSciNet  Google Scholar 

  12. R. Carter, “Conjugacy classes in the Weyl group [Russian translation],” in: A Seminar on Algebraic Groups, Mir, Moscow (1973), pp. 288–306.

    Google Scholar 

  13. Yu. I. Manin, Cubic Forms: Algebra, Geometry, and Arithmetic [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  14. A. Borel and J. de Siebenthal, “Les sous-groupes fermés connexes de rang maximal des groupes de Lie clos,” Comm. Math. Helv., 23, No. 2, 200–221 (1949).

    Article  MATH  Google Scholar 

  15. R. W. Carter, “Conjugacy classes in the Weyl group,” Compositio Math., 25, No. 1, 1–59 (1972).

    MATH  MathSciNet  Google Scholar 

  16. D. I. Deriziotis, “Centralizers of semisimple elements in a Chevalley group,” Comm. Algebra, 9, No. 19, 1997–2014 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  17. A. J. Idowu and A. O. Morris, “Some combinatorial results for Weyl groups,” Math. Proc. Cambridge Phil. Soc., 101, No. 3, 405–420 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  18. A. L. Harebov and N. A. Vavilov, “On the lattice of subgroups of Chevalley groups containing a split maximal torus,” Comm. Algebra, 24, No. 1, 109–133 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  19. R. B. Howlett, “Normalizers of parabolic subgroups of reflection groups,” J. London Math. Soc., 21, No. 1, 62–80 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  20. M. Golubitsky and B. Rothschild, “Primitive subalgebras of exceptional Lie algebras,” Pacific J. Math., 39, No. 2, 371–393 (1971).

    MathSciNet  Google Scholar 

  21. N. A. Vavilov, “Intermediate subgroups in Chevalley groups,” in: Proceedings of the Conference on Groups of Lie Type and Their Geometries (Como-1993), Cambridge Univ. Press (1995), pp. 233–280.

  22. N. A. Vavilov, “Do it yourself: structure theorems for Lie algebras of type El,” Zap. Nauchn. Semin. POMI, 281, 60–104 (2001).

    Google Scholar 

  23. N. Wallach, “On maximal subsystems of root systems,” Canad. J. Math., 30, No. 3, 555–574 (1968).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 338, 2006, pp. 98–124.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vavilov, N.A., Kharchev, N.P. Orbits of subsystem stabilizers. J Math Sci 145, 4751–4764 (2007). https://doi.org/10.1007/s10958-007-0306-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-007-0306-z

Keywords

Navigation