Skip to main content
Log in

Linear Transformations of Vertex Operators of Hall–Littlewood Polynomials

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We study the effect of linear transformations on quantum fields with applications to vertex operator presentations of symmetric functions. Properties of linearly transformed quantum fields and corresponding transformations of Hall–Littlewood polynomials are described, including preservation of commutation relations, stability, explicit combinatorial formulas, and generating functions. We prove that specializations of linearly transformed Hall–Littlewood polynomials describe all polynomial tau-functions of the KP and BKP hierarchies. Examples of linear transformations are related to multiparameter symmetric functions, Grothendieck polynomials, deformations by cyclotomic polynomials, and some other variations of Schur symmetric functions that exist in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Jing, “Vertex operators, symmetric functions, and the spin group Γn,” J. Algebra 138, No. 2, 340–398 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  2. A. V. Zelevinsky, Representations of Finite Classical Groups. A Hopf Algebra Approach, Lect. Notes Math. 869 (1981).

  3. N. Jing, “Vertex operators and Hall–Littlewood symmetric functions” Adv. Math. 87, No. 2, 226–248 (1991).

  4. E. Date, M. Jimbo, M. Kashiwara, and T. Miwa, “Operator approach to the Kadomtsev–Petviashvili equation. Transformation groups for soliton equations. III,” J. Phys. Soc. Japan. 50, No. 11, 3806–3812 (1981).

  5. E. Date, M. Jimbo, M. Kashiwara, and T. Miwa, “Transformation groups for soliton equations. Euclidean Lie algebras and reduction of the KP hierarchy,” Publ. Res. Inst. Math. Sci. 18, 1077–1110 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  6. E. Date, M. Jimbo, M. Kashiwara, and T. Miwa, “Transformation groups for soliton equations. IV. A new hierarchy of soliton equations of KP-type,” Physica D 4, No. 3, 343–365 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  7. E. Date, M. Jimbo, M. Kashiwara, and T. Miwa, “Transformation groups for soliton equations,” In: Nonlinear Integrable Systems – Classical Theory and Quantum Theory, pp. 39–120, World Scientific, Kyoto, (1983).

    Google Scholar 

  8. M. Jimbo and T. Miwa, “Solitons and infinite-dimensional Lie algebras,” Publ. Res. Inst. Math. Sci. 19, No. 3, 943 –1001 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Sato and Y. Sato, “Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold,” In: Nonlinear Partial Differential Equations in Applied Science, pp. 259–271, North-Holland, Amsterdam (1983).

    Google Scholar 

  10. N. Rozhkovskaya, “Multiparameter Schur Q-functions are solutions of the BKP hierarchy,” SIGMA, Symmetry Integrability Geom. Methods Appl. 15, Paper No. 065 (2019).

  11. V. G. Kac, N. Rozhkovskaya, and J. W. van de Leur, “Polynomial tau-functions of the KP, BKP, and the s-component KP hierarchies,” J. Math. Phys. 62 No. 2, Paper No. 021702 (2021).

  12. I. G. Macdonald, Symmetric Functions and Hall Polynomials, Clarendon Press, Oxford (1995).

    MATH  Google Scholar 

  13. R. P. Stanley, Enumerative Combinatorics, Cambridge Univ. Press, Cambridge (1999).

    Book  MATH  Google Scholar 

  14. N. Jing and N. Rozhkovskaya, “Generating functions for symmetric and shifted symmetric functions,” J. Comb. 10, No. 1, 111–127 (2019).

    MathSciNet  MATH  Google Scholar 

  15. G. Necoechea and N. Rozhkovskaya, “Generalized vertex operators of Hall–Littlewood polynomials as twists of charged free fermions,” J. Math. Sci. 247, No. 6, 926–938 (2020).

  16. V. G. Kac, Vertex Algebras for Beginners, Am. Math. Soc., Providence, RI (1998).

    Book  MATH  Google Scholar 

  17. V. G. Kac, A. K. Raina, and N. Rozhkovskaya, Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras, World Scientific, Hackensack, NJ (2013).

    Book  MATH  Google Scholar 

  18. Y. You, “Polynomial solutions of the BKP hierarchy and projective representations of symmetric groups,” Adv. Ser. Math. Phys. 7 449–464 (1989).

    MathSciNet  MATH  Google Scholar 

  19. Y. You, “DKP and MDKP hierarchy of soliton equations,” Phys. D 50, No. 3, 429–462 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  20. V. G. Kac and J. W. van de Leur, “Equivalence of formulations of the MKP hierarchy and its polynomial tau-functions,” Jpn. J. Math. 13, No. 2, 235–271 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  21. V. G. Kac and J. W. van de Leur, “Polynomial tau-functions of BKP and DKP hierarchies,” J. Math. Phys. 60, No. 7, Paper No. 071702 (2019).

  22. V. G. Kac and J. W. van de Leur, “Polynomial tau-functions for the multi-component KP hierarchy,” Publ. Res. Inst. Math. Sci. 58, No. 1, 1–19 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Harnad and A. Yu. Orlov, “Polynomial KP and BKP τ -functions and correlators,” Ann. Henri Poincar´e 22, No. 9, 3025–3049 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  24. G. Olshanski, A. Regev, and A. Vershik, “Frobenius-Schur functions,” Progr. Math. 210, 251–299 (2003).

    MathSciNet  MATH  Google Scholar 

  25. V.N. Ivanov, “Interpolation analogues of Schur Q-functions,” J. Math. Sci. 131, No. 2, 5495–5507 (2005).

    Article  MathSciNet  Google Scholar 

  26. A. Molev, “Factorial supersymmetric Schur functions and super Capelli identities,” In: Kirillov’s Seminar on Representation Theory, pp. 109–137 Am. Math. Soc. Providence, RI (1998).

  27. A. Okounkov and G. Olshanski, “Shifted Schur functions,” St. Petersbg. Math. J. 9, No. 2, 239–300 (1998).

    MathSciNet  MATH  Google Scholar 

  28. M. Nakagawa and H. Naruse, “Generalized (co)homology of the loop spaces of classical groups and the universal factorial Schur P- and Q-functions,” Adv. Stud. Pure Math. 71, 337–417 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Nakagawa and H. Naruse, “Universal Gysin formulas for the universal Hall–Littlewood functions,” Contemp. Math. 708, 201–244 (2018).

  30. H. Naruse, “Elementary proof and application of the generating functions for generalized Hall–Littlewood functions,” J. Algebra 516, 197– 209 (2018).

  31. L. Biedenharn and J. Louck, “A new class of symmetric polynomials defined in terms of tableaux,” Adv. Appl. Math. 10, No. 4, 396–438 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  32. L. Biedenharn and J. Louck, “Inhomogeneous basis set of symmetric polynomials defined by tableaux,” Proc. Natl. Acad. Sci. USA 87, No. 4, 1441–1445 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  33. W. Y. C. Chen and J. D. Louck, “The factorial Schur function,” J. Math. Phys. 34, 4144–4160 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  34. I. Goulden and A. Hamel, “Shift operators and factorial symmetric functions,” J. Comb. Theory, Ser. A 69, No. 1, 51–60 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  35. I. Goulden and C. Greene, “A new tableau representation for supersymmetric Schur functions,” J. Algebra 170, No. 2, 687–703 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  36. A. Lascoux, “Puissances ext´erieures, d´eterminants et cycles de Schubert,” Bull. Soc. Math. France 102, 161–179 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  37. A. Lascoux and M.-P. Schutzenberger, “Symmetry and flag manifolds,” Lect. Notes Math. 996, 118–144 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  38. I. G. Macdonald, “Schur functions: theme and variations, ” S´emin. Lothar. Comb. 28 (1992).

  39. A. Molev and B. Sagan, “A Littlewood–Richardson rule for factorial Schur functions,” Trans. Am. Math. Soc. 351, No. 11, 4429–4443 (1999).

  40. A. Okounkov, “Quantum immanants and higher Capelli identities,” Transform. Groups 1, No. 1-2, 99–126 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  41. S. Korotkikh, “Dual multiparameter Schur Q-functions,” J. Math. Sci. 224, No. 2, 263–268 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  42. A. Alldridge, S. Sahi, and H. Salmasian, “Schur Q-functions and the Capelli eigenvalue problem for the Lie superalgebra q(n),” Contemp. Math. 714, 1–21 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  43. T. Ikeda, “Schubert classes in the equivariant cohomology of the Lagrangian Grassmannian,” Adv. Math. 215, 1–23 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  44. T. Ikeda, L. C. Mihalcea, and H. Naruse, “Factorial P- and Q-Schur functions represent equivariant quantum Schubert classes,” Osaka J. Math. 53, 591–619 (2016).

    MathSciNet  MATH  Google Scholar 

  45. T. Ikeda and H. Naruse, “Excited Young diagrams and equivariant Schubert calculus,” Trans. Am. Math. Soc. 361, 5193–5221 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  46. M. Nazarov, “Capelli identities for Lie superalgebras,” Ann. Sci. Éc. Norm. Supér. 4, No. 6, 847–872 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  47. S. Sahi, H. Salmasian, and V. Serganova, “The Capelli eigenvalue problem for Lie superalgebras,” Math. Z. 294, No. 1-2, 359–395 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  48. A. Borodin, “On a family of symmetric rational functions,” Adv. Math. 306, 973–1018 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  49. T. Ikeda and H. Naruse, “K-theoretic analogues of factorial Schur P- and Q-functions,” Adv. Math. 243, 22–66 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  50. T. Ikeda and T. Shimazaki, “A proof of K-theoretic Littlewood-Richardson rules by Bender-Knuth-type involutions,” Math. Res. Lett. 21, No. 2, 333–339 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  51. S. Iwao, “Grothendieck polynomials and the boson-fermion correspondence,” Algebr. Comb. 3, No. 5, 1023–1040 (2020).

    MathSciNet  MATH  Google Scholar 

  52. S. Iwao, “Free-fermions and skew stable Grothendieck polynomials,” J. Algebr. Comb. 56, No. 2, 493–526 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  53. C. Lenart, “Combinatorial Aspects of the K-Theory of Grassmannians,” Ann. Comb. 4, No. 1, 67–82 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  54. K. Motegi and K. Sakai, “Vertex models, TASEP and Grothendieck polynomials,” J. Phys. A 46, No. 35, Paper No. 355201 (2013).

  55. K. Motegi and K. Sakai, “K-theoretic boson-fermion correspondence and melting crystals,” J. Phys. A 47, No. 44, Paper No. 445202 (2014).

  56. K. Motegi and T. Scrimshaw, “Refined dual Grothendieck polynomials, integrability, and the Schur measure,” S´em. Lothar. Comb. 85 (2021).

  57. A. Amanov and D. Yeliussizov, “Determinantal formulas for dual Grothendieck polynomials,” Proc. Am. Math. Soc. 150, No. 10, 4113–4128 (2022).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Rozhkovskaya.

Additional information

JMS Source Journal International Mathematical Schools. Vol. 2. Advances in Pure and Applied Mathematics

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozhkovskaya, N.A. Linear Transformations of Vertex Operators of Hall–Littlewood Polynomials. J Math Sci 269, 859–896 (2023). https://doi.org/10.1007/s10958-023-06324-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-023-06324-1

Navigation