Skip to main content
Log in

Free-fermions and skew stable Grothendieck polynomials

  • Published:
Journal of Algebraic Combinatorics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We present a free-fermionic presentation of the skew (dual) stable Grothendieck polynomials. A direct proof of their determinantal formulas is given from this presentation. We also introduce a combinatorial method to describe the multiplication map and its adjoint over the space of skew (dual) stable Grothendieck polynomials. This calculation requires the use of noncommutative supersymmetric Schur functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Notes

  1. The k is equipped with the discrete topology.

References

  1. Alexandrov, A., Zabrodin, A.: Free fermions and tau-functions. J. Geom. Phys. 67, 37–80 (2013)

    Article  MathSciNet  Google Scholar 

  2. Amanov, A., Yeliussizov, D.: Determinantal formulas for dual Grothendieck polynomials. arXiv:2003.03907 (2020)

  3. Anderson, D., Chen, L., Tarasca, N.: \(K\)-classes of Brill–Noether Loci and a Determinantal Formula. Int. Math. Res. Not. (April, 2021)

  4. Buch, A.S.: A Littlewood–Richardson rule for the \(K\)-theory of Grassmannians. Acta Math. 189(1), 37–78 (2002)

    Article  MathSciNet  Google Scholar 

  5. Chan, M., Pflueger, N.: Euler characteristics of Brill-Noether varieties. Trans. Amer. Math. Soc. 374, 1513–1533 (2021)

    Article  MathSciNet  Google Scholar 

  6. Date, E., Jimbo, M., Miwa, T.: Method for generating discrete soliton equations. V. J. Phys. Soc. Jpn. 52(3), 766–771 (1983)

    Article  MathSciNet  Google Scholar 

  7. Fomin, S., Greene, C.: Noncommutative Schur functions and their applications. Discrete Math. 193(1–3), 179–200 (1998)

    Article  MathSciNet  Google Scholar 

  8. Fomin, S., Kirillov, A.N.: Grothendieck polynomials and the Yang–Baxter equation. Proc. Formal Power Ser. Alg. Combin. 183–190 (1994)

  9. Fulton, W.: Young Tableaux: With Applications to Representation Theory and Geometry. London Mathematical Society Student Texts, Cambridge University Press (1996)

    Book  Google Scholar 

  10. Hirota, R.: Nonlinear partial difference equations. II. Discrete-time Toda equation. J. Phys. Soc. Jpn. 43(6), 2074–2078 (1977)

  11. Hudson, T., Ikeda, T., Matsumura, T., Naruse, H.: Degeneracy loci classes in \(K\)-theory—determinantal and Pfaffian formula. Adv. Math. 320, 115–156 (2017)

    Article  MathSciNet  Google Scholar 

  12. Hudson, T., Matsumura, T.: Segre classes and Damon–Kempf–Laksov formula in algebraic cobordism. Math. Ann. 374(3–4), 1439–1457 (2019)

    Article  MathSciNet  Google Scholar 

  13. Ikeda, T., Iwao, S., Maeno, T.: Peterson isomorphism in \(K\)-theory and relativistic Toda lattice. Int. Math. Res. Not. IMRN. 19, 6421–6462 (2020)

    Article  MathSciNet  Google Scholar 

  14. Ikeda, T., Naruse, H.: \(K\)-theoretic analogues of factorial Schur \(P\)- and \(Q\)-functions. Adv. Math. 243, 22–66 (2013)

    Article  MathSciNet  Google Scholar 

  15. Iwao, S.: Grothendieck polynomials and the boson–fermion correspondence. Algebr. Combin. 3(5), 1023–1040 (2020)

    Article  MathSciNet  Google Scholar 

  16. Iwao, S., Nagai, H.: The discrete toda equation revisited: dual \(\beta \)-Grothendieck polynomials, ultradiscretization, and static solitons. J. Phys. A 51(13), 134002 (2018)

  17. Kac, V.G., Raina, A.K., Rozhkovskaya, N.: Bombay lectures on highest weight representations of infinite dimensional lie algebras, vol. 29, World Scientific (2013)

  18. Kim, J.S.: Jacobi-Trudi formulas for flagged refined dual stable Grothendieck polynomials. Algebr. Comb. 5(1), 121–148 (2022)

    MathSciNet  Google Scholar 

  19. Kirillov, A.N.: On some quadratic algebras I \(\tfrac{1}{2}\): Combinatorics of Dunkl and Gaudin elements, Schubert, Grothendieck, Fuss-Catalan, universal Tutte and reduced polynomials. SIGMA Symmetry Integrability Geom. Methods Appl. 12, 002 (2016)

  20. Lam, T., Pylyavskyy, P.: Combinatorial Hopf algebras and \(K\)-homology of Grassmanians. Int. Math. Res. Not. 2007(9), rnm125 (2007)

  21. Lascoux, A., Naruse, H.: Finite sum Cauchy identity for dual Grothendieck polynomials. Proc. Jpn. Acad. Ser. A Math. Sci. 90(7), 87–91 (2014)

    Article  MathSciNet  Google Scholar 

  22. Lascoux, A., Schützenberger, M.-P.: Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variétié de drapeaux. C. R. Acad. Sci. Paris Sér. I Math. 295(11), 629–633 (1982)

  23. Lascoux, A., Schützenberger, M.-P.: Symmetry and flag manifolds, Invariant theory. Lecture Notes in Mathematics, vol. 996. Springer, Berlin, Heidelberg (1983)

  24. Lenart, C.: Combinatorial aspects of the K-theory of Grassmannians. Ann. Comb. 4(1), 67–82 (2000)

    Article  MathSciNet  Google Scholar 

  25. Macdonald, I.G.: Symmetric Functions and Hall Polynomials. Oxford university Press, Oxford (1998)

    MATH  Google Scholar 

  26. Matsumura, T.: Flagged Grothendieck polynomials. J. Algebraic Combin. 49(3), 209–228 (2019)

    Article  MathSciNet  Google Scholar 

  27. Miwa, T., Jimbo, M., Date, E., Reid, M.: Solitons: differential equations, symmetries and infinite dimensional algebras, Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2012)

  28. Motegi, K.: Symmetric functions and wavefunctions of XXZ-type six-vertex models and elliptic Felderhof models by Izergin–Korepin analysis. J. Math. Phys. 59(5), 053505 (2018)

  29. Motegi, K., Sakai, K.: Vertex models, TASEP and Grothendieck polynomials. J. Phys. A 46(35), 355201 (2013)

  30. Motegi, K., Sakai, K.: \(K\)-theoretic boson–fermion correspondence and melting crystals. J. Phys. A 47(44), 445202 (2014)

  31. Yeliussizov, D.: Duality and deformations of stable Grothendieck polynomials. J. Algebraic Combin. 45(1), 295–344 (2017)

    Article  MathSciNet  Google Scholar 

  32. Yeliussizov, D.: Symmetric Grothendieck polynomials, skew Cauchy identities, and dual filtered Young graphs. J. Combin. Theory Ser. A 161, 453–485 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is partially supported by JSPS Kakenhi Grant Number 19K03605. The author is grateful to Professor Takeshi Ikeda for his comments on the manuscript and for his suggestions for future research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinsuke Iwao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwao, S. Free-fermions and skew stable Grothendieck polynomials. J Algebr Comb 56, 493–526 (2022). https://doi.org/10.1007/s10801-022-01121-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10801-022-01121-6

Keywords

Mathematics Subject Classification

Navigation