Skip to main content
Log in

Interpolation Analogs of Schur Q-Functions

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We introduce interpolation analogs of the Schur Q-functions — the multiparameter Schur Q-functions. We obtain for them several results: a combinatorial formula, generating functions for one-row and two-row functions, vanishing and characterization properties, a Pieri-type formula, a Nimmo-type formula (a quotient of two Pfaffians), a Giambelli-Schur-type Pfaffian formula, a determinantal formula for the transition coefficients between multiparameter Schur Q-functions with different parameters. We write an explicit Pfaffian expression for the dimension of a skew shifted Young diagram. This paper is a continuation of the author's paper math. CO/0303169 and a partial projective analog of the paper q-alg/9605042 by A. Okounkov and G. Olshanski and the paper math. CO/0110077 by G. Olshanski, A. Regev, and A. Vershik. Bibliography: 36 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. Biedenharn and J. Louck, “A new class of symmetric polynomials defined in terms of tableaux,” Adv. in Appl. Math., 10, 396–438 (1989).

    Article  Google Scholar 

  2. S. Billey and M. Haiman, “Schubert polynomials for the classical groups,” J. Amer. Math. Soc., 8, No.2, 443–482 (1995).

    Google Scholar 

  3. A. Borodin and G. Olshanski, “Harmonic functions on multiplicative graphs and interpolation polynomials,” Electron. J. Combin., 7,#R28 (2000); arXiv:math.CO/9912124.

  4. A. M. Borodin, “Multiplicative central measures on Schur graph,” Zap. Nauchn. Semin. POMI, 240, 44–52 (1997).

    Google Scholar 

  5. S. Fomin and A. N. Kirillov, “Combinatorial B n -analogues of Schubert polynomials,” Trans. Amer. Math. Soc., 348, 3591–3620 (1996); arXiv:hep-th/9306093.

    Article  Google Scholar 

  6. P. N. Hoffman and J. F. Humphreys, Projective Representations of the Symmetric Groups, Oxford University Press, New York (1992).

    Google Scholar 

  7. V. N. Ivanov, “Dimension of a skew shifted Young diagram and projective representations of the infinite symmetric group,” Zap. Nauchn. Semin. POMI, 240, 115–135 (1997); arXiv:math.CO/0303169.

    Google Scholar 

  8. V. N. Ivanov, “Combinatorial formula for factorial Schur Q-functions,” Zap. Nauchn. Semin. POMI, 256, 73–94 (1999).

    Google Scholar 

  9. V. N. Ivanov, “Gaussian limit for projective characters of large symmetric groups,” Zap. Nauchn. Semin. POMI, 283, 73–97 (2001).

    Google Scholar 

  10. T. Jozefiak, “Characters of projective representations of symmetric groups,” Expo. Math., 7, 193–247 (1989).

    Google Scholar 

  11. S. Kerov, A. Okounkov, and G. Olshanski, “The boundary of Young graph with Jack edge multiplicities,” Internat. Math. Res. Notices, No. 4, 173–199 (1998); arXiv: q-alg/9703037.

  12. F. Knop, “Symmetric and non-symmetric quantum Capelli polynomials,” Comment. Math. Helv., 72, 84–100 (1997); arXiv:q-alg/9603028.

    Google Scholar 

  13. F. Knop and S. Sahi, “Difference equations and symmetric polynomials defined by their zeros,” Internat. Math. Res. Notices, No. 10, 473–486 (1996); arXiv:q-alg/9610017.

  14. A. Lascoux, “Puissances exterieurs, determinants et cycles de Schubert,” Bull. Soc. Math. France, 102, 161–179 (1974).

    Google Scholar 

  15. A. Lascoux, “Notes on interpolation in one and several variables,” preprint; http://phalanstere.univ-mlv.fr/∼al/.

  16. A. Lascoux and P. Pragacz, “Operator calculus for Q-polynomials and Schubert polynomials,” Adv. Math., 140, 1–43 (1998).

    Article  Google Scholar 

  17. I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edition (with contributions by A. Zelevinsky), The Clarendon Press, Oxford University Press, New York (1995).

    Google Scholar 

  18. A. Molev, “Factorial supersymmetric Schur functions and super Capelli identities,” in: Kirillov's Seminar on Representation Theory, G. I. Olshanski (ed.), Amer. Math. Soc., Providence, Rhode Island (1998), pp. 109–137; arXiv:q-alg/9606008.

    Google Scholar 

  19. M. L. Nazarov, “Projective representations of the infinite symmetric group,” in: Representation Theory and Dynamical Systems, A. M. Vershik (ed.), Amer. Math. Soc., Providence, Rhode Island (1992), pp. 115–130.

    Google Scholar 

  20. M. Nazarov, “Capelli identities for Lie superalgebras,” Ann. Sci. Ecole. Norm. Sup., 30, 847–872 (1997); arXiv:q-alg/9610032.

    Google Scholar 

  21. J. J. C. Nimmo, “Hall-Littlewood symmetric functions and the BKP equation,” J. Phys. A, 23, 751–760 (1990).

    Article  Google Scholar 

  22. A. Yu. Okounkov, “Quantum immanants and higher Capelli identities,” Transformation Groups, 1, 99–126 (1996); arXiv:q-alg/9602028.

    Google Scholar 

  23. A. Okounkov, “(Shifted) Macdonald polynomials: q-integral representation and combinatorial formula,” Compositio Math., 112, No.2, 147–182 (1998); arXiv:q-alg/9605013.

    Article  Google Scholar 

  24. A. Okounkov, “A characterization of interpolation Macdonald polynomials,” Adv. in Appl. Math., 20, No.4, 395–428 (1998); arXiv:q-alg/9712052.

    Article  Google Scholar 

  25. A. Okounkov and G. Olshanski, “Shifted Schur functions,” St. Petersburg Math. J., 9, 239–300 (1998); arXiv:alg/9605042.

    Google Scholar 

  26. A. Okounkov and G. Olshanski, “Shifted Schur functions. II: The binomial formula for characters of classical groups and its applications,” in: Kirillov's Seminar on Representation Theory, G. I. Olshanski (ed.), Amer. Math. Soc., Providence, Rhode Island (1998), pp. 245–271; arXiv:q-alg/9612025.

    Google Scholar 

  27. A. Okounkov and G. Olshanski, “Shifted Jack polynomials, binomial formula, and applications,” Math. Res. Lett., 4, No.1, 69–78 (1997); arXiv:q-alg/9608020.

    Google Scholar 

  28. G. Olshanski, A. Regev, and A. Vershik, “Frobenius-Schur functions,” in: Studies in Memory of Issai Schur, A. Joseph, A. Melnikov, and R. Rentschler (eds.), Birkhauser (2003), pp. 251–299; arXiv: math.CO/0110077.

  29. P. Pragacz, “Algebro-geometric applications of Schur S-and Q-polynomials,” Lecture Notes in Math., 1478, 130–191 (1991).

    Google Scholar 

  30. S. Sahi, “Interpolation, integrality, and a generalization of Macdonald's polynomials,” Internat. Math. Res. Notices, No. 10, 457–471 (1996).

  31. I. Schur, “Uber die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrocheme lineare Substitionen,” J. Reine Angew. Math., 139, 155–250 (1911).

    Google Scholar 

  32. A. N. Sergeev, “Tensor algebra of the identity representation as a module over Lie superalgebras GL(n,m) and Q(n),” Mat. Sb., 123, 422–430 (1984).

    Google Scholar 

  33. J. R. Stembridge, “Shifted tableaux and the projective representations of symmetric groups,” Adv. Math., 74, 87–134 (1989).

    Article  Google Scholar 

  34. J. R. Stembridge, “Nonintersecting paths, Pfaffians, and plane partitions,” Adv. Math., 83, 96–131 (1990).

    Article  Google Scholar 

  35. M. Yamaguchi, “A duality of the twisted group algebra of the symmetric group and a Lie superalgebra,” J. Algebra, 222, No.1, 301–327 (1999); arXiv:math.RT/9811090.

    Article  Google Scholar 

  36. H. Weyl, The Classical Groups. Their Invariants and Representations, Princeton Univ. Press, Princeton, New Jersey (1939).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 307, 2004, pp. 99–119.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, V.N. Interpolation Analogs of Schur Q-Functions. J Math Sci 131, 5495–5507 (2005). https://doi.org/10.1007/s10958-005-0422-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-005-0422-6

Keywords

Navigation