Skip to main content
Log in

On recent advances in the Beltrami equations

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We give an exposition of the recent progress in the theory of the Beltrami equations with the degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Ahlfors, Lectures on Quasiconformal Mappings, Van Nostrand, Princeton, 1966.

    MATH  Google Scholar 

  2. L. Ahlfors, “On quasiconformal mappings,” J. Anal. Math., 3, 1–58 (1953/54).

    Article  MathSciNet  Google Scholar 

  3. L. Ahlfors, A. Beurling, “Conformal invariance and function-theoretic null-sets,” Acta Math., 83, 101–129 (1950).

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Andreian Cazacu, “On the length-area dilatation,” Complex Var., 50, Nos. 7–11, 765–776 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  5. K. Astala, T. Iwaniec, and G. J. Martin, Elliptic Differential Equations and Quasiconformal Mappings in the Plane, Princeton Math. Ser., Vol. 48, Princeton Univ. Press, Princeton, 2009.

  6. V. V. Aseev, “Moduli of families of locally quasisymmetric surfaces,” Sib. Math. J., 30, No. 3, 353–358 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  7. A. K. Bahtin, G. P. Bahtina, and Yu. B. Zelinskii, Topologic-Algebraic Structures and Geometric Methods in Complex Analysis, Kiev, Inst. Mat. NASU, 2008.

  8. P. P. Belinskii, General Properties of Quasiconformal Mappings [in Russian], Nauka, Novosibirsk, 1974.

    Google Scholar 

  9. P. A. Biluta, “Extremal problems for mappings quasiconformal in the mean,” Sib. Mat. Zh., 6, 717–726 (1965).

    MathSciNet  MATH  Google Scholar 

  10. B. Bojarski, “Generalized solutions of a system of differential equations of the first order of the elliptic type with discontinuous coefficients,” Mat. Sb., 43(85), No. 4, 451–503 (1957).

    MathSciNet  Google Scholar 

  11. B. Bojarski, Generalized solutions of a system of differential equations of the first order of elliptic type with discontinuous coefficients, Univ. Print. House, Jyväskylä, 2009.

  12. B. Bojarski, “Subsonic flow of compressible fluid,” Arch. Mech. Stoc., 18, 497–520 (1966).

    MathSciNet  MATH  Google Scholar 

  13. B. Bojarski, “Primary solutions of general Beltrami equations,” Ann. Acad. Sci. Fenn. Math., 32, No. 2, 549–557 (2007).

    MathSciNet  MATH  Google Scholar 

  14. B. Bojarski, V. Gutlyanskii, and V. Ryazanov, “General Beltrami equations and BMO,” Ukr. Math. Bull., 5, No. 3, 305–326 (2008).

    MathSciNet  Google Scholar 

  15. B. Bojarski, V. Gutlyanskii, and V. Ryazanov, “On the Beltrami equations with two characteristics,” Complex Var. Ellipt. Eq., 54, No. 10, 935–950 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  16. B. Bojarski, V. Gutlyanskii, and V. Ryazanov, “On integral conditions for the general Beltrami equations,” Complex Anal. Oper. Theory, DOI 10.1007/s11785-010-0088-z.

  17. N. Bourbaki, Functions of a Real Variable, Springer, Berlin, 2004.

    MATH  Google Scholar 

  18. M. A. Brakalova and J. A. Jenkins, “On solutions of the Beltrami equation,” J. Anal. Math., 76, 67–92 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  19. M. A. Brakalova and J. A. Jenkins, “On solutions of the Beltrami equation. II,” Publ. de l’Inst. Math., 75(89), 3–8 (2004).

    Article  MathSciNet  Google Scholar 

  20. H. Brezis and L. Nirenberg, “Degree theory and BMO. I. Compact manifolds without boundaries,” Selecta Math. (N.S.), 1, No. 2, 197–263 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  21. Z. G. Chen, “μ(z)-homeomorphisms of the plane,” Michigan Math. J., 51, No. 3, 547–556 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  22. F. Chiarenza, M. Frasca, and P. Longo, “W 2,p-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients,” Trans. Amer. Math. Soc., 336, No. 2, 841–853 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  23. E. M. Chirka, “On the propagation of holomorphic motions,” Dokl. Akad. Nauk, 397, No. 1, 37–40 (2004).

    MathSciNet  Google Scholar 

  24. I. I. Danilyuk, “The Dirichlet problem for two-dimensional quasilinear differential equation of elliptic type,” Dokl. Akad. Nauk. Ukr. SSR, Ser. A, 12, 3–7 (1987).

    Google Scholar 

  25. G. David, “Solutions de l’equation de Beltrami avec ||μ|| = 1,Ann. Acad. Sci. Fenn. Ser. AI. Math. AI., 13, No. 1, 25–70 (1988).

    MATH  Google Scholar 

  26. V. N. Dubinin, Capacities of Condensers and Symmetrization in Geometric Function Theory of Complex Variable, Dal’nauka, Vladivostok, 2009.

    Google Scholar 

  27. J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.

    MATH  Google Scholar 

  28. N. Dunford and J. T. Schwartz, Linear Operators, Part I: General Theory, Interscience, New York, 1957.

  29. Yu. Dybov, “The Dirichlet problem for the Beltrami equation,” Proc. of Inst. Appl. Math. Mech. of NAS of Ukraine, 18, 62–70 (2009).

    Google Scholar 

  30. Yu. Dybov, “On regular solutions of the Dirichlet problem for the Beltrami equations,” Complex Var. Ellipt. Eq. (to appear).

  31. L. C. Evans and R. F. Gapiery, Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, FL, 1992.

    MATH  Google Scholar 

  32. F. W. Gehring, Quasiconformal mappings, in Complex Analysis and Its Applications, V. 2, Int. Atom. Energy Agency, Vienna, 1976, pp. 213–268.

  33. F. W. Gehring, “Rings and quasiconformal mappings in space,” Trans. Amer. Math. Soc., 103, 353–393 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  34. F. W. Gehring and O. Lehto, “On the total differentiability of functions of a complex variable,” Ann. Acad. Sci. Fenn. Math. AI., 272, 1–9 (1959).

    MathSciNet  Google Scholar 

  35. A. Golberg, “Homeomorphisms with finite mean dilatations,” Contemp. Math., 382, 177–186 (2005).

    MathSciNet  Google Scholar 

  36. A. Golberg and V. S. Kud’yavin, “Mean coefficients of quasiconformality of pair of domains,” Ukr. Math. J., 43, 1594–1597 (1991).

    Article  Google Scholar 

  37. V. Gutlyanskii, O. Martio, T. Sugawa, and M. Vuorinen, “On the degenerate Beltrami equation,” Reports Dept. Math. Helsinki, 282, 1–32 (2001).

    Google Scholar 

  38. V. Gutlyanskii, O. Martio, T. Sugawa, and M. Vuorinen, “On the degenerate Beltrami equation,” Trans. Amer. Math. Soc., 357, 875–900 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  39. V. Gutlyanskii and V. Ryazanov, “Quasiconformal mappings with integral constraints on the M. A. Lavrent’ev characteristic,” Siber. Math. J., 31, No. 2, 205–215 (1990).

    MathSciNet  Google Scholar 

  40. V. Ya. Gutlyanskiĭ and V. I. Ryazanov, “On the theory of local behavior for quasiconformal mappings,” Izv. Ross. Akad. Nauk. Ser. Math., 59, No. 3, 31–58 (1995).

    Google Scholar 

  41. J. Heinonen, T. Kilpelainen, and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Clarendon Press, Oxford Univ. Press, 1993.

  42. S. Hencl and P. Koskela, “Regularity of the inverse of a planar Sobolev homeomorphisms,” Arch. Rat. Mech. Anal., 180, No. 1, 75–95 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  43. A. Hurwitz and R. Courant, Theory of Functions, Chelsea, New York, 1958–1960.

  44. A. Ignat’ev and V. Ryazanov, “Finite mean oscillation in the mapping theory,” Ukr. Math. Bull., 2, No. 3, 403–424 (2005).

    MathSciNet  Google Scholar 

  45. T. Iwaniec and G. Martin, Geometric Function Theory and Nonlinear Analysis, Clarendon Press, Oxford, 2001.

    MATH  Google Scholar 

  46. T. Iwaniec and G. Martin, “The Beltrami equation,” Memories of AMS, 191, 1–92 (2008).

    MathSciNet  Google Scholar 

  47. T. Iwaniec and C. Sbordone, “Riesz transforms and elliptic PDEs with VMO coefficients,” J. Anal. Math., 74, 183–212 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  48. F. John and L. Nirenberg, “On functions of bounded mean oscillation,” Comm. Pure Appl. Math., 14, 415–426 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  49. L. V. Kovalev, “Monotonicity of generalized reduced modulus,” Zapiski Nauch. Sem. POMI, 276, 219–236 (2001).

    MathSciNet  Google Scholar 

  50. V. I. Kruglikov, The existence and uniqueness of mappings that are quasiconformal in the mean, in Metric Questions of the Theory of Functions and Mappings [in Russian], Naukova Dumka, Kiev, 1973, pp. 123–147.

  51. S. L. Krushkal’, “On mappings quasiconformal in the mean,” Dokl. Akad. Nauk SSSR, 157, No. 3, 517–519 (1964).

    MathSciNet  Google Scholar 

  52. S. L. Krushkal’ and R. Kühnau, Quasikonforme Abbildungen - Neue Methoden und Anwendungen, Teubner, Leipzig, 1983.

  53. V. S. Kud’yavin, “Local structure of plane mappings quasiconformal in the mean,” Doklady Akad. Nauk Ukr., 3, 10–12 (1991).

    MathSciNet  Google Scholar 

  54. R. Kühnau, “Über Extremalprobleme bei im Mittel quasiconformen Abbildungen,” Lecture Notes in Math., 1013, 113–124 (1983).

    Article  Google Scholar 

  55. G. V. Kuz’mina, “Moduli of the curve families and quadratic differentials,” Trudy Mat. Inst. AN SSSR, 139, 1–240 (1980).

    Google Scholar 

  56. M. A. Lavrentieff, “On a class of continuous mappings,” Mat. Sb., 42, No. 4, 407–424 (1935).

    MATH  Google Scholar 

  57. O. Lehto, “Homeomorphisms with a prescribed dilatation,” Lecture Notes in Math., 118, 58–73 (1968).

    Article  MathSciNet  Google Scholar 

  58. O. Lehto and K. Virtanen, Quasiconformal Mappings in the Plane, Springer, New York, 1973.

    MATH  Google Scholar 

  59. T. Lomako, “On extension to the boundary of some generalizations of quasiconformal mappings,” Ukr. Math. J., 61, 1329–1337 (2009).

    Article  MATH  Google Scholar 

  60. V. Maz’ya, Sobolev Classes, Springer, Berlin–New York, 1985.

  61. O. Martio and V. Miklyukov, “On existence and uniqueness of the degenerate Beltrami equation,” Complex Var. Theory Appl., 49, (2004) No. 7, 647–656 (2005).

    MathSciNet  Google Scholar 

  62. O. Martio, V. Miklyukov, and M. Vuorinen, “Some remarks on an existence problem for degenerate elliptic system,” Proc. Amer. Math. Soc., 133, 1451–1458.

  63. O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, Moduli in Modern Mapping Theory, Springer, New York, 2009.

    MATH  Google Scholar 

  64. O. Martio, V. Ryazanov, and M. Vuorinen, “BMO and injectivity of space quasiregular mappings,” Math. Nachr., 205, 149–161 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  65. V. G. Maz’ya and S. V. Poborchi, Differentiable Functions on Bad Domains, World Sci., Singapore, 1997.

  66. D. Menchoff, “Sur les differentielles totales des fonctions univalentes,” Math. Ann., 105, 75–85 (1931).

    Article  MathSciNet  Google Scholar 

  67. V. M. Miklyukov and G. D. Suvorov, On existence and uniqueness of quasiconformal mappings with unbounded characteristics, in Investigations in the Theory of Functions of Complex Variables and its Applications, edited by Yu. A. Mitropol’skii, Inst. Math., Kiev, 1972, pp. 45–53.

  68. R. M. Nasyrov and S. R. Nasyrov, “Convergence of an approximate method of S. A. Khristianovich for solving the Dirichlet problem for an elliptic equation,” Soviet Math. Dokl., 34, No. 3, 484–488 (1987).

    MATH  Google Scholar 

  69. D. K. Palagachev, “Quasilinear elliptic equations with VMO coefficients,” Trans. Amer. Math. Soc., 347, No. 7, 2481–2493 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  70. M. Perovich, “Isolated singularity of the mean quasiconformal mappings,” Lect. Notes in Math., 743, 212–214 (1979).

    Article  Google Scholar 

  71. I. N. Pesin, “Mappings quasiconformal in the mean,” Dokl. Akad. Nauk SSSR, 187, No. 4, 740–742 (1969).

    MathSciNet  Google Scholar 

  72. S. P. Ponomarev, “The N−1-property of mappings, and Lusin’s (N) condition,” Math. Notes, 58, 960–965 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  73. M. A. Ragusa, “Elliptic boundary value problem in vanishing mean oscillation hypothesis,” Comment. Math. Univ. Carolin., 40, No. 4, 651–663 (1999).

    MathSciNet  MATH  Google Scholar 

  74. H. M. Reimann and T. Rychener, Funktionen Beschrankter Mittlerer Oscillation, Springer, Berlin, 1975.

    Google Scholar 

  75. Yu. G. Reshetnyak, Space Mappings with Bounded Distortion, Amer. Math. Soc., Providence, RI, 1989.

  76. V. Ryazanov, “On convergence and compactness theorems for ACL homeomorphisms,” Rev. Roum. Math. Pures Appl., 41, 133–139 (1996).

    MathSciNet  MATH  Google Scholar 

  77. V. Ryazanov and R. Salimov, “Weakly flat spaces and boudaries in the mapping theory,” Ukr. Math. Bull., 4, No. 2, 199–233 (2007).

    MathSciNet  Google Scholar 

  78. V. Ryazanov, U. Srebro, and E. Yakubov, “BMO-quasiconformal mappings,” J. d’Analyse Math., 83, 1–20 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  79. V. Ryazanov, U. Srebro, and E. Yakubov, “Plane mappings with dilatation dominated by functions of bounded mean oscillation,” Sib. Adv. Math., 11, (2001) No. 2, 94–130.

    MathSciNet  MATH  Google Scholar 

  80. V. Ryazanov, U. Srebro, and E. Yakubov, “Degenerate Beltrami equation and radial Q-homeomorphisms,” Reports Dept. Math. Helsinki, 369, 1–34 (2003).

    Google Scholar 

  81. V. Ryazanov, U. Srebro, and E. Yakubov, “On ring solutions of Beltrami equation,” J. d’Analyse Math., 96, 117–150 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  82. V. Ryazanov, U. Srebro, and E. Yakubov, “Beltrami equation and FMO functions,” Contemp. Math., 382, 357–364 (2005).

    MathSciNet  Google Scholar 

  83. V. Ryazanov, U. Srebro, and E. Yakubov, “Finite mean oscillation and the Beltrami equation,” Israel J. Math., 153, 247–266 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  84. V. Ryazanov, U. Srebro, and E. Yakubov, “On convergence theory for Beltrami equations,” Ukr. Math. Bull., 5, No. 4, 524–535 (2008).

    MathSciNet  Google Scholar 

  85. V. Ryazanov, U. Srebro, and E. Yakubov, “On strong solutions of the Beltrami equations,” Complex Var. Ellipt. Eq., 55, Nos. 1–3, 219–236 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  86. V. Ryazanov, U. Srebro, and E. Yakubov, “Integral conditions in the theory of the Beltrami equations,” arXiv: 1001.2821v11 [math.CV] April 12, 2010, 1–26.

  87. V. Ryazanov, U. Srebro, and E. Yakubov, “Integral conditions in the theory of the Beltrami equations,” Complex Var. Ellipt. Eq. (to appear).

  88. E. Reich and H. Walczak, “On the behavior of quasiconformal mappings at a point,” Trans. Amer. Math. Soc., 117, 338–351 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  89. S. Saks, Theory of the Integral, Dover, New York, 1964.

    MATH  Google Scholar 

  90. D. Sarason, “Functions of vanishing mean oscillation,” Trans. Amer. Math. Soc., 207, 391–405 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  91. B. V. Shabat, Introduction to Complex Analysis, Amer. Math. Soc., Providence, RI, 1992.

  92. V. A. Shlyk, “The equality between p-capacity and p-modulus,” Sib. Math. J., 34, No. 6, 1196–1200 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  93. A. Yu. Solynin, “Moduli and extremal-metric problems,” Alg. Analys., 11, No. 1, 3–86 (1999).

    MathSciNet  Google Scholar 

  94. U. Srebro and E. Yakubov, “The Beltrami equation,” in Handbook in Complex Analysis: Geometric Function Theory, Vol. 2, Elsevier, Amsterdam, 2005, pp. 555–597.

  95. S. L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics, Amer. Math. Soc., Providence, RI, 1991.

  96. S. Stoilow, Lecons sur les Principes Topologiques de la Theorie des Fonctions Analytiques, Gauthier-Villars, Paris, 1938.

  97. Y. F. Strugov, “Compactness of the classes of mappings quasiconformal in the mean,” Dokl. Akad. Nauk SSSR, 243, 859–861 (1978).

    MathSciNet  Google Scholar 

  98. Y. F. Strugov and A. V. Sychov, “On different classes of mappings quasiconformal in the mean,” Vest. PANI, 7, 14–19 (2002).

    Google Scholar 

  99. G. Suvorov, Families of Plane Topological Mappings [in Russian], Izdat. Sibirsk. Otdel. Akad. Nauk SSSR, Novosibirsk, 1965.

  100. A. V. Sychev, Moduli and Spatial Quasiconformal Mappings [in Russian], Novosibirsk, Nauka, 1983.

    Google Scholar 

  101. P. M. Tamrazov, “Continuity of certain conformal invariants,” Ukr. Mat. Zh., 18, No. 6, 78–84 (1966).

    MathSciNet  MATH  Google Scholar 

  102. Yu. Yu. Trokhimchuk, Differentiation, Inner Mappings, and Criteria of Analyticity, Kiev, IM NASU, 2008.

  103. P. Tukia, “Compactness properties of μ-homeomorphisms,” Ann. Acad. Sci. Fenn. Ser. AI. Math. AI., 16, No. 1, 47–69 (1991).

    MathSciNet  Google Scholar 

  104. A. Uhlov and S. Vodopyanov, “Mappings associated with weighted Sobolev spaces,” Complex Anal. Dynam. Sys. III. Contemp. Math., 455, 363–382 (2008).

    Google Scholar 

  105. J. Väisälä, Lectures on n-Dimensional Quasiconformal Mappings, Springer, Berlin, 1971.

    MATH  Google Scholar 

  106. A. Vasil’ev, Moduli of Families of Curves for Conformal and Quasiconformal Mappings, Springer, Berlin, 2002.

  107. I. N. Vekua, Generalized Analytic Functions, Pergamon Press, New York, 1962.

    MATH  Google Scholar 

  108. L. I. Volkovyskiĭ, Quasiconformal Mappings [in Russian], Lvov Univ., Lvov, 1954.

  109. E. Yakubov, “Solutions of Beltrami’s equation with degeneration,” Dokl. Akad. Nauk SSSR, 243, No. 5, 1148–1149 (1978).

    MathSciNet  Google Scholar 

  110. V. A. Zorich, “Quasiconformal mappings and the asymptotic geometry of manifolds,” Russ. Math. Surv., 57, No. 3, 437–462 (2002).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Gutlyanskiĭ.

Additional information

Translated from Ukrains’kiĭ Matematychnyĭ Visnyk, Vol. 7, No. 4, pp. 467–515, October–November, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutlyanskiĭ, V., Ryazanov, V., Srebro, U. et al. On recent advances in the Beltrami equations. J Math Sci 175, 413–449 (2011). https://doi.org/10.1007/s10958-011-0355-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-011-0355-1

Keywords

Navigation