Skip to main content
Log in

A Variant of the Logistic Quantal Response Equilibrium to Select a Perfect Equilibrium

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The concept of perfect equilibrium, formulated by Selten (Int J Game Theory 4:25–55, 1975), serves as an effective characterization of rationality in strategy perturbation. In our study, we propose a modified version of perfect equilibrium that incorporates perturbation control parameters. To match the beliefs with the equilibrium choice probabilities, the logistic quantal response equilibrium (logistic QRE) was established by McKelvey and Palfrey (Games Econ Behav 10:6–38, 1995), which is only able to select a Nash equilibrium. By introducing a linear combination between a mixed strategy profile and a given vector with positive elements, this paper develops a variant of the logistic QRE for the selection of the special version of perfect equilibrium. Expanding upon this variant, we construct an equilibrium system that incorporates an exponential function of an extra variable. Through rigorous error-bound analysis, we demonstrate that the solution set of this equilibrium system leads to a perfect equilibrium as the extra variable approaches zero. Consequently, we establish the existence of a smooth path to a perfect equilibrium and employ an exponential transformation of variables to ensure numerical stability. To make a numerical comparison, we capitalize on a variant of the square-root QRE, which yields another smooth path to a perfect equilibrium. Numerical results further verify the effectiveness and efficiency of the proposed differentiable path-following methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data Availibility Statement

Data will be made available on reasonable request. The authors are very grateful to the editor and two anonymous reviewers for their valuable comments and suggestions, which have significantly enhanced the quality of this paper.

References

  1. Allgower, E.L., Georg, K.: Introduction to Numerical Continuation Methods. SIAM, Philadelphia (2003)

    Book  Google Scholar 

  2. Browder, F.E.: On continuity of fixed points under deformation of continuous mappings. Summa Brasiliensis Mathematicae 4, 183–191 (1960)

    MathSciNet  Google Scholar 

  3. Cai, G., Dong, Q.L., Peng, Y.: Strong convergence theorems for solving variational inequality problems with pseudo-monotone and non-Lipschitz operators. J. Optim. Theory Appl. 188, 447–472 (2021)

    Article  MathSciNet  Google Scholar 

  4. Chen, Y., Dang, C.Y.: A reformulation-based simplicial homotopy method for approximating perfect equilibria. Comput. Econ. 54, 877–891 (2019)

    Article  Google Scholar 

  5. Chen, Y., Dang, C.Y.: An extension of quantal response equilibrium and determination of perfect equilibrium. Games Econ. Behav. 124, 659–670 (2020)

    Article  MathSciNet  Google Scholar 

  6. Chen, Y., Dang, C.Y.: A differentiable homotopy method to compute perfect equilibria. Math. Program. 185, 77–109 (2021)

    Article  MathSciNet  Google Scholar 

  7. van Damme, E.: Stability and Perfection of Nash Equilibria, 2nd edn. Springer, Berlin (2002)

    Google Scholar 

  8. Dang, C.Y.: The \(D_{1}\)-triangulation of \(R^{n}\) for simplicial algorithms for computing solutions of nonlinear equations. Math. Oper. Res. 16, 148–161 (1991)

    Article  MathSciNet  Google Scholar 

  9. Dang, C.Y.: The \(D_2\)-triangulation for simplicial homotopy algorithms for computing solutions of nonlinear equations. Math. Program. 59, 307–324 (1993)

    Article  Google Scholar 

  10. Doup, T.M., Talman, A.J.J.: A continuous deformation algorithm on the product space of unit simplices. Math. Oper. Res. 12, 485–521 (1987)

    Article  MathSciNet  Google Scholar 

  11. Eaves, B.C.: Homotopies for the computation of fixed points. Math. Program. 3, 1–22 (1972)

    Article  MathSciNet  Google Scholar 

  12. Eaves, B.C., Schmedders, K.: General equilibrium models and homotopy methods. J. Econ. Dyn. Control 23, 1249–1279 (1999)

    Article  MathSciNet  Google Scholar 

  13. van den Elzen, A.H., Talman, A.J.J.: A procedure for finding Nash equilibriua in bi-matrix games. Zeitschrift fur Oper. Res. 35, 27–43 (1991)

    Google Scholar 

  14. van den Elzen, A.H., Talman, A.J.J.: An algorithmic approach towards the tracing procedure of Harsanyi and Selten. Games Econ. Behav. 28, 130–145 (1999)

    Article  Google Scholar 

  15. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, Berlin (2003)

    Google Scholar 

  16. Farina, G., Gatti, N.: Extensive-form perfect equilibrium computation in two-player games. Proceedings of the AAAI Conference on Artificial Intelligence 31, 502–508 (2017)

    Article  Google Scholar 

  17. Fiacco, A.V.: Introduction to Sensitivity and Stability Analysis in Nonlinear Programming. Academic Press, New York (1983)

    Google Scholar 

  18. Govindan, S., Klumpp, T.: Perfect equilibrium and lexicographic beliefs. Int. J. Game Theory 31, 229–243 (2002)

    Article  MathSciNet  Google Scholar 

  19. Govindan, S., Wilson, R.: A global Newton method to compute Nash equilibria. J. Econ. Theory 110, 65–86 (2003)

    Article  MathSciNet  Google Scholar 

  20. Han, D.R., Lo, H.K.: New alternating direction method for a class of nonlinear variational inequality problems. J. Optim. Theory Appl. 112, 549–560 (2002)

    Article  MathSciNet  Google Scholar 

  21. Hansen, K.A., Miltersen, P.B., S\(\phi \)rensen T.B.: The computational complexity of trembling hand perfection and other equilibrium refinements. SAGT 2010, 198–209 (2010)

  22. Harsanyi, J.C., Selten, R.: A General Theory of Equilibrium Selection in Games. MIT Press, Cambridge (1988)

    Google Scholar 

  23. Herings, P.J.J.: Two simple proofs of the feasibility of the linear tracing procedure. Econ. Theory 15, 485–490 (2000)

    Article  MathSciNet  Google Scholar 

  24. Herings, P.J.J., Peeters, R.J.A.P.: Homotopy methods to compute equilibria in game theory. Econ. Theory 42, 119–156 (2010)

    Article  MathSciNet  Google Scholar 

  25. Herings, P.J.J., Peeters, R.J.A.P.: A differentiable homotopy to compute Nash equilibria of \(n\)-person games. Econ. Theory 18, 159–185 (2001)

    Article  MathSciNet  Google Scholar 

  26. Kohlberg, E., Mertens, J.F.: On the strategic stability of equilibria. Econometrica 54, 1003–1037 (1986)

    Article  MathSciNet  Google Scholar 

  27. van der Laan, G., Talman, A.J.J.: A restart algorithm for computing fixed points without an extra dimension. Math. Program. 17, 74–84 (1979)

    Article  MathSciNet  Google Scholar 

  28. van der Laan, G., Talman, A.J.J., van der Heijden, L.: Simplicial variable dimension algorithms for solving nonlinear complementarity problems on a product of unit simplices using a general labeling. Math. Oper. Res. 12, 377–397 (1987)

    Article  MathSciNet  Google Scholar 

  29. Lemke, C.E., JrJT, Howson: Equilibrium points in bimatrix games. SIAM J. Appl. Math. 12, 413–423 (1964)

    Article  Google Scholar 

  30. Li, G., Mordukhovich, B.S., Pham, T.S.: New fractional error bounds for polynomial systems with applications to Hölderian stability in optimization and spectral theory of tensors. Math. Program. 153, 333–362 (2015)

    Article  MathSciNet  Google Scholar 

  31. Luo, X.D., Luo, Z.Q.: Extension of Hoffman’s error bound to polynomial systems. SIAM J. Opti. 4, 383–392 (1994)

    Article  MathSciNet  Google Scholar 

  32. Mas-Colell, A.: A note on a theorem of F. Browder. Math. Program. 6, 229–233 (1974)

    Article  Google Scholar 

  33. McKelvey, R.D., Palfrey, T.R.: Quantal response equilibria for normal form games. Games Econ. Behav. 10, 6–38 (1995)

    Article  MathSciNet  Google Scholar 

  34. Miltersen, P.B., Sørensen, T.B.: Computing a quasi-perfect equilibrium of a two-player game. Econ. Theory 42, 175–192 (2010)

    Article  MathSciNet  Google Scholar 

  35. Myerson, R.B.: Refinements of the Nash equilibrium concept. Int. J. Game Theory 7, 73–80 (1978)

    Article  MathSciNet  Google Scholar 

  36. Myerson, R.B.: Game Theory: Analysis of Conflict. Harvard University Press, Cambridge (1991)

    Google Scholar 

  37. Myerson, R.B.: Nash equilibrium and the history of economic theory. J. Econ. Lit. 37, 1067–1082 (1999)

    Article  Google Scholar 

  38. JrJF, Nash: Equilibrium points in n-person games. Proc. Natl. Acad. Sci. 36, 48–49 (1950)

    Article  MathSciNet  Google Scholar 

  39. JrJF, Nash: Noncooperative games. Ann. Math. 54, 289–295 (1951)

    Google Scholar 

  40. Pólik, I., Terlaky, T.: Interior point methods for nonlinear optimization. In: Di Pillo, G., Schoen, F. (eds.) Nonlinear Optimization, pp. 215–276. Springer, Berlin (2010)

    Chapter  Google Scholar 

  41. Qi, L., Sun, D.: Smoothing functions and smoothing Newton method for complementarity and variational inequality problems. J. Optim. Theory Appl. 113, 121–147 (2002)

    Article  MathSciNet  Google Scholar 

  42. Rockaffelar, R.T., Wets, R.J.B.: Variational Analysis. Springer, Berlin (2009)

    Google Scholar 

  43. Scarf, H.E.: The approximation of fixed points of a continuous mapping. SIAM J. Appl. Math. 15, 1328–1343 (1967)

    Article  MathSciNet  Google Scholar 

  44. Selten, R.: Reexamination of the perfectness concept for equilibrium points in extensive games. Int. J. Game Theory 4, 25–55 (1975)

    Article  MathSciNet  Google Scholar 

  45. von Stengel, B., van den Elzen, A., Talman, D.: Computing normal form perfect equilibria for extensive two-person games. Econometrica 70, 693–715 (2002)

    Article  MathSciNet  Google Scholar 

  46. Todd, M.J.: The Computation of Fixed Points and Applications. Springer, Berlin (1976)

    Book  Google Scholar 

  47. Turocy, T.L.: A dynamic homotopy interpretation of the logistic quantal response equilibrium correspondence. Games Econ. Behav. 51, 243–263 (2005)

    Article  MathSciNet  Google Scholar 

  48. Yamamoto, Y.: A path-following procedure to find a proper equilibrium of finite games. Int. J. Game Theory 22, 249–259 (1993)

    Article  MathSciNet  Google Scholar 

  49. Zhao, Y., Zhang, J., Yang, X., Lin, G.H.: Expected residual minimization formulation for a class of stochastic vector variational inequalities. J. Optim. Theory Appl. 175, 545–566 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was partially supported by CRF (C5018-20 G) of Hong Kong SAR Government, Guangdong Basic and Applied Basic Research Foundation (2021A1515110099), and National Natural Science Foundation of China (12201427).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiyin Cao.

Additional information

Communicated by Anil Aswani.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

This appendix proves that the Jacobian matrix \(Dp(x,\lambda ,\mu ,t;\alpha )\) of \(p(x,\lambda ,\mu ,t;\alpha )\) is of full-row rank for any \((x,\lambda ,\mu ,t;\alpha )\in \mathbb {R}^m\times \mathbb {R}^m\times \mathbb {R}^n\times (0,1]\times \mathbb {R}^m\). This property is used in the proof of Theorem 3.4.

We first consider the case where \(t\in (0,1)\). Let \(g(x,\lambda ,\mu ,t; \alpha )\) denote the left-hand side of the first group of equations in the system (9). The Jacobian matrix \(Dp(x,\lambda ,\mu ,t;\alpha )\) is given by

$$\begin{aligned} \left( \begin{array}{ccccc} D_{x}g &{} D_{\lambda }g &{} D_{\mu }g &{} D_{t}g &{} -\beta (t)(1-\beta (t))I\\ A &{} 0 &{} 0 &{} 0 &{} 0\\ B &{} C &{} 0 &{} D &{} 0 \end{array} \right) , \end{aligned}$$

where \(D_{x}g \in \mathbb {R}^{m\times m}\), \(D_{\lambda }g \in \mathbb {R}^{m\times m}\), \(D_\mu g \in \mathbb {R}^{m\times n}\), \(D_t g \in \mathbb {R}^{m\times 1}\), I is an identity matrix of size m, \(A=\begin{pmatrix} 1 &{} \cdots &{} 1\\ {} &{}&{}&{} 1 &{} \cdots &{} 1\\ {} &{}&{}&{}&{}&{}&{} \ddots \\ {} &{}&{}&{}&{}&{}&{}&{} 1 &{} \cdots &{} 1\end{pmatrix}\in \mathbb {R}^{n\times m}\), B is a diagonal matrix with its elements equal to \(\lambda ^i_j+\beta (t)(\ln x^i_j+1)\), C is a diagonal matrix with its elements equal to \(x^i_j\), and \(D\in \mathbb {R}^{m\times 1}\). Clearly, I, A, B and C are of full-row rank. Hence, the Jacobian matrix \(Dp(x,\lambda ,\mu ,t;\alpha )\) is of full-row rank for any \(t\in (0,1)\).

Consider the case where \(t=1\). The Jacobian matrix \(Dp(x,\lambda ,\mu ,1;\alpha )\) is given by

$$\begin{aligned} \left( \begin{array}{ccccc} 0 &{} I &{} E &{} D_{t}g &{} 0\\ A &{} 0 &{} 0 &{} 0 &{} 0\\ F &{} C &{} 0 &{} D &{} 0 \end{array} \right) , \end{aligned}$$

where \(E=A^\top \), and F is a diagonal matrix with its elements equal to \(\lambda ^i_j+\ln x^i_j+1\). Since I, A, F and C are of full-row rank, \(Dp(x,\lambda ,\mu ,1;\alpha )\) is of full-row rank.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Chen, Y. & Dang, C. A Variant of the Logistic Quantal Response Equilibrium to Select a Perfect Equilibrium. J Optim Theory Appl (2024). https://doi.org/10.1007/s10957-024-02433-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10957-024-02433-2

Keywords

Mathematics Subject Classification

Navigation