Skip to main content
Log in

Convergence Rates of the Stochastic Alternating Algorithm for Bi-Objective Optimization

  • Regular Paper
  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Stochastic alternating algorithms for bi-objective optimization are considered when optimizing two conflicting functions for which optimization steps have to be applied separately for each function. Such algorithms consist of applying a certain number of steps of gradient or subgradient descent on each single objective at each iteration. In this paper, we show that stochastic alternating algorithms achieve a sublinear convergence rate of \({\mathcal {O}}(1/T)\), under strong convexity, for the determination of a minimizer of a weighted-sum of the two functions, parameterized by the number of steps applied on each of them. An extension to the convex case is presented for which the rate weakens to \({\mathcal {O}}(1/\sqrt{T})\). These rates are valid also in the non-smooth case. Importantly, by varying the proportion of steps applied to each function, one can determine an approximation to the Pareto front.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abdelaziz, F.B.: L’Efficacité en Programmation Multi-Objectifs Stochastique. PhD thesis, Université de Laval, Québec (1992)

  2. Abdelaziz, F.B.: Solution approaches for the multiobjective stochastic programming. Eur. J. Oper. Res. 216, 1–16 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bechikh, S., Datta, R., Gupta, A.: editors. Recent Advances in Evolutionary Multi-Objective Optimization, volume 20. Springer (2016)

  4. Beck, A.: First-Order Methods in Optimization. SIAM, Philadelphia (2017)

    Book  MATH  Google Scholar 

  5. Bento, G.C., Cruz, N.J.X.: A subgradient method for multiobjective optimization on Riemannian manifolds. J. Optim. Theory Appl. 159, 125–137 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bento, G.C., Cruz, N.J.X., Soubeyran, A.: A proximal point-type method for multicriteria optimization. Set-Valued Var. Anal. 22, 557–573 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bera, S., Chakrabarty, D., Flores, N., Negahbani, M.: Fair algorithms for clustering. In: NIPS, pp. 4954–4965 (2019)

  8. Bonnel, H., Iusem, A.N., Svaiter, B.F.: Proximal methods in vector optimization. SIAM J. Optim. 15, 953–970 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bottou, L., Curtis, F.E., Nocedal, J.: Optimization methods for large-scale machine learning. SIAM Rev. 60, 223–311 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Browning, E.K., Zupan, M.A.: Microeconomics: Theory and Applications. Wiley, Hoboken (2020)

    Google Scholar 

  11. Caballero, R., Cerdá, E., Munoz, M., Rey, L.: Stochastic approach versus multiobjective approach for obtaining efficient solutions in stochastic multiobjective programming problems. Eur. J. Oper. Res. 158, 633–648 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chierichetti, F., Kuma, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. In: NIPS, pp. 5029–5037 (2017)

  13. Coello, C.C.: Evolutionary multi-objective optimization: a historical view of the field. IEEE Comput. Intell. Nag. 1, 28–36 (2006)

    Article  Google Scholar 

  14. Bello, C.J.Y.: A subgradient method for vector optimization problems. SIAM J. Optim. 23, 2169–2182 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Custódio, A.L., Madeira, J.A., Vaz, A.I.F., Vicente, L.N.: Direct multisearch for multiobjective optimization. SIAM J. Optim. 21, 1109–1140 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Désidéri, J.A.: Multiple-gradient descent algorithm (MGDA) for multiobjective optimization. C. R. Math. Acad. Sci. Paris 350, 313–318 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Désidéri, J.A.: Multiple-gradient descent algorithm for Pareto-front identification. In: Modeling. Simulation and Optimization for Science and Technology, pp. 41–58. Springer, Dordrecht (2014)

  18. Drummond, L.G., Iusem, A.N.: A projected gradient method for vector optimization problems. Comput. Optim. Appl. 28, 5–29 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Drummond, L.G., Raupp, F.M.P., Svaiter, B.F.: A quadratically convergent Newton method for vector optimization. Optimization 63, 661–677 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Drummond, L.G., Svaiter, B.F.: A steepest descent method for vector optimization. J. Comput. Appl. Math. 175, 395–414 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fliege, J., Drummond, L.G., Svaiter, B.F.: Newton’s method for multiobjective optimization. SIAM J. Optim. 20, 602–626 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fliege, J., Svaiter, B.F.: Steepest descent methods for multicriteria optimization. Math. Methods Oper. Res. 51, 479–494 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fukuda, E.H., Drummond, L.M.G.: Inexact projected gradient method for vector optimization. Comput. Optim. Appl. 54, 473–493 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fukuda, E.H., Drummond, L.M.G.: A survey on multiobjective descent methods. Pesquisa Operacional 34, 585–620 (2014)

    Article  Google Scholar 

  25. Gass, S., Saaty, T.: The computational algorithm for the parametric objective function. Nav. Res. Logist. Q. 2, 39–45 (1955)

    Article  MathSciNet  Google Scholar 

  26. Gunantara, N.: A review of multi-objective optimization: methods and its applications. Cog. Eng. 5(1), 52 (2018)

    Google Scholar 

  27. Haimes, Y.V.: On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Trans. Syst. Man Cybern. 1, 296–297 (1971)

    MathSciNet  MATH  Google Scholar 

  28. Liu, S., Vicente, L.N.: A stochastic alternating balance \(k\)-means algorithm for fair clustering. Lecture Notes in Computer Science (2023) to appear

  29. Liu, S., Vicente, L.N.: The stochastic multi-gradient algorithm for multi-objective optimization and its application to supervised machine learning. Ann. Oper. Res. 5, 2569 (2023)

    Google Scholar 

  30. Miettinen, K.: Nonlinear Multiobjective Optimization, vol. 12. Springer, New York (2012)

    MATH  Google Scholar 

  31. Nemirovski, A., Juditsky, A., Lan, G., Shapiro, A.: Robust stochastic approximation approach to stochastic programming. SIAM J. Optim. 19, 1574–1609 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lucambio, P.L.R., Prudente, L.F.: Nonlinear conjugate gradient methods for vector optimization. SIAM J. Optim. 28, 2690–2720 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Povalej, Z.: Quasi-Newton’s method for multiobjective optimization. Comput. Optim. Appl. 255, 765–777 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Qu, S., Goh, M., Chan, F.T.S.: Quasi-Newton methods for solving multiobjective optimization. Oper. Res. Lett. 39, 397–399 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Qu, S., Goh, M., Liang, B.: Trust region methods for solving multiobjective optimisation. Optim. Methods Softw. 28, 796–811 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Quentin, M., Fabrice, P., Désidéri, J.A.: A stochastic multiple gradient descent algorithm. Eur. J. Oper. Res. 271, 808–817 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Schmidt, M., Schwiegelshohn, C., Sohler, C.: Fair coresets and streaming algorithms for fair \(k\)-means. In: International Workshop on Approximation and Online Algorithms, pp. 232–251. Springer (2019)

  38. Tanabe, H., Fukuda, E.H., Yamashita, N.: Proximal gradient methods for multiobjective optimization and their applications. Comput. Optim. Appl. 72, 339–361 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tanabe, H., Fukuda, E.H., Yamashita, N.: Convergence rates analysis of a multiobjective proximal gradient method. Optim. Lett. 5, 214 (2023)

    MathSciNet  MATH  Google Scholar 

  40. Villacorta, K.D., Oliveira, P.R., Soubeyran, A.: A trust-region method for unconstrained multiobjective problems with applications in satisficing processes. J. Optim. Theory Appl. 160, 865–889 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ziko, I.M., Granger, E., Yuan, J., Ayed, I.B.: Variational fair clustering. In: Proceedings of the AAAI Conference on Artificial Intelligence 35, 11202–11209 (2021)

Download references

Acknowledgements

We would like to thank a Referee for many insightful comments on the assumptions, statements, and proofs of this paper. One comment we did not follow was to use Young’s inequality in (8) in order to avoid an assumption on the boundedness of the iterates such as Assumption 3.1. By doing so, we would obtain a first term proportional to \(\alpha _t^2 \Vert x_t - x_*\Vert ^2\) and a second term of the order of \(\alpha _t^2\). The first term could be absorbed by the negative term of the order of \(\alpha _t \Vert x_t - x_*\Vert ^2\) by choosing a suitable step size. The reason why we chose not to make this change is that the rates would only hold for sufficiently small \(\alpha _t\) (involving unknown constants in the statement of “sufficiently small” such as Lipschitz constants or noise bounds).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suyun Liu.

Additional information

Communicated by Edouard Pauwels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Support for this author was partially provided by the Centre for Mathematics of the University of Coimbra under grant FCT/MCTES UIDB/MAT/00324/2020.

A Proposition using Intermediate Value Theorem

A Proposition using Intermediate Value Theorem

Based on the intermediate value theorem, we derive the following proposition for the purpose of convergence rate analysis of the SA2GD algorithm.

Proposition A.1

Given a continuous real function \(\phi (x): {\mathbb {R}}^n \rightarrow {\mathbb {R}}\) and a set of points \(\{x_j\}_{j =1}^m\), there exists \(w \in {\mathbb {R}}^n\) such that

$$\begin{aligned}m\phi (w) = \sum _{j = 1}^m \phi (x_j),\end{aligned}$$

where \(w = \sum _{j = 1}^m \mu _j x_j, \text{ with } \sum _{j = 1}^m \mu _j = 1, \mu _j \ge 0\), \(i = 1, \ldots , m\), is a convex linear combination of \(\{x_j\}_{j =1}^m\).

Proof

The proposition is obtained by consecutively applying the intermediate value theorem to \(\phi (x)\). First, for the pair of points \(x_1\) and \(x_2\), there exists a point \(w_{12} = \mu _{12} x_1 + (1-\mu _{12}) x_2, \mu _{12} \in [0, 1]\), such that \(\phi (w_{12}) = (\phi (x_1) + \phi (x_2))/2\) according to the intermediate value theorem, which implies that \(\sum _{j = 1}^m \phi (x_j) = 2\phi (w_{12}) + \sum _{j = 3}^m \phi (x_j)\). Then, there exists \(w_{13} = \mu _{13} w_{12} + (1-\mu _{13}) x_3, \mu _{13} \ge 0\), such that \(\phi (w_{13}) = (2\phi (w_{12}) + \phi (x_3))/3\) holds given that the average function value \((2\phi (w_{12}) + \phi (x_3))/3\) lies between \(\phi (w_{12})\) and \(\phi (x_3)\). Notice that \(w_{13}\) can also be written as convex linear combination of \(\{x_1, x_2, x_3\}\). The proof is concluded by continuing this process until \(x_m\) is reached. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Vicente, L.N. Convergence Rates of the Stochastic Alternating Algorithm for Bi-Objective Optimization. J Optim Theory Appl 198, 165–186 (2023). https://doi.org/10.1007/s10957-023-02253-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-023-02253-w

Keywords

Navigation