Skip to main content
Log in

On Constraint Qualifications for Mathematical Programming Problems with Vanishing Constraints on Hadamard Manifolds

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This article is devoted to the study of mathematical programming problems with vanishing constraints on Hadamard manifolds (in short, MPVC-HM). We present the Abadie constraint qualification (in short, ACQ) and (MPVC-HM)-tailored ACQ for MPVC-HM and provide some necessary conditions for the satisfaction of ACQ for MPVC-HM. Moreover, we demonstrate that the Guignard constraint qualification (in short, GCQ) is satisfied for MPVC-HM under certain mild restrictions. We introduce several (MPVC-HM)-tailored constraint qualifications in the framework of Hadamard manifolds that ensure satisfaction of GCQ. Moreover, we refine our analysis and present some modified sufficient conditions which guarantee that GCQ is satisfied. Several non-trivial examples are incorporated to illustrate the significance of the derived results. To the best of our knowledge, constraint qualifications for mathematical programming problems with vanishing constraints in manifold setting have not been explored before.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Absil, P.-A., Baker, C.G., Gallivan, K.A.: Trust-region methods on Riemannian manifolds. Found. Comput. Math. 7, 303–330 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Achtziger, W., Kanzow, C.: Mathematical programs with vanishing constraints: optimality conditions and constraint qualifications. Math. Program. 114, 69–99 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barani, A., Hosseini, S.: Characterization of solution sets of convex optimization problems in Riemannian manifolds. Arch. Math. 114, 215–225 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barani, A.: On pseudoconvex functions in Riemannian manifolds. J. Finsler Geom. Appl. 2(2), 14–22 (2021)

    MathSciNet  MATH  Google Scholar 

  5. Bazaraa, M.S., Shetty, C.M.: Foundations of Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 122. Springer, Berlin (1976)

    MATH  Google Scholar 

  6. Bento, G.C., Melo, J.G.: Subgradient method for convex feasibility on Riemannian manifolds. J. Optim. Theory Appl. 152, 773–785 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boumal, N., Mishra, B., Absil, P.-A., Sepulchre, R.: Manopt, a MATLAB toolbox for optimization on manifolds. J. Mach. Learn. Res. 15(42), 1455–1459 (2014)

    MATH  Google Scholar 

  8. Boumal, N.: An Introduction to Optimization on Smooth Manifolds. Cambridge University Press, Cambridge (2022)

    MATH  Google Scholar 

  9. Dorsch, D., Shikhman, V., Stein, O.: Mathematical programs with vanishing constraints: critical point theory. J. Glob. Optim. 52(3), 591–605 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Flegel, M.L., Kanzow, C.: Abadie-type constraint qualification for mathematical programs with equilibrium constraints. J. Optim. Theory Appl. 124(3), 595–614 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guo, L., Lin, G.H.: Notes on some constraint qualifications for mathematical programs with equilibrium constraints. J. Optim. Theory Appl. 156(3), 600–616 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guu, S.M., Singh, Y., Mishra, S.K.: On strong KKT type sufficient optimality conditions for multiobjective semi-infinite programming problems with vanishing constraints. J. Inequal. Appl. 2017(1), 282 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hoheisel, T., Kanzow, C.: First- and second-order optimality conditions for mathematical programs with vanishing constraints. Appl. Math. 52(6), 495–514 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hoheisel, T., Kanzow, C.: Stationary conditions for mathematical programs with vanishing constraints using weak constraint qualifications. J. Math. Anal. Appl. 337(1), 292–310 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hoheisel, T., Kanzow, C.: On the Abadie and Guignard constraint qualifications for mathematical programmes with vanishing constraints. Optimization 58(4), 431–448 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hu, Q., Wang, J., Chen, Y.: New dualities for mathematical programs with vanishing constraints. Ann. Oper. Res. 287(1), 233–255 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hu, J., Liu, X., Wen, Z.W., Yuan, Y.X.: A brief introduction to manifold optimization. J. Oper. Res. Soc. China 8(2), 199–248 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Karkhaneei, M.M., Mahdavi-Amiri, N.: Nonconvex weak sharp minima on Riemannian manifolds. J. Optim. Theory Appl. 183, 85–104 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kazemi, S., Kanzi, N.: Constraint qualifications and stationary conditions for mathematical programming with non-differentiable vanishing constraints. J. Optim. Theory Appl. 179(3), 800–819 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kazemi, S., Kanzi, N., Ebadian, A.: Estimating the Frèchet normal cone in optimization problems with nonsmooth vanishing constraints. Iran. J. Sci. Technol. Trans. Sci. 43, 2299–2306 (2019)

    Article  MathSciNet  Google Scholar 

  21. Maeda, T.: Constraint qualifications in multiobjective optimization problems: differentiable case. J. Optim. Theory Appl. 80(3), 483–500 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mangasarian, O.L.: Nonlinear Programming. SIAM Classics in Applied Mathematics, vol. 10. McGraw-Hill, New York (1969). Reprint Philadelphia (1994)

  23. Mishra, S.K., Singh, V., Laha, V.: On duality for mathematical programs with vanishing constraints. Ann. Oper. Res. 243(1), 249–272 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mishra, S.K., Upadhyay, B.B.: Pseudolinear Functions and Optimization. Chapman and Hall/CRC, London (2019)

    MATH  Google Scholar 

  25. Mishra, S.K., Singh, V., Laha, V., Mohapatra, R.N.: On constraint qualifications for multiobjective optimization problems with vanishing constraints. In: Xu, H., Wang, S., Wu, S.Y. (eds.) Optimization Methods, Theory and Applications, pp. 95–135. Springer, Heidelberg (2015)

    Chapter  MATH  Google Scholar 

  26. Nesterov, Y.E., Todd, M.J.: On the Riemannian geometry defined by self-concordant barrier and interior-point methods. Found. Comput. Math. 2, 333–361 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Papa Quiroz, E.A., Oliveira, P.R.: Full convergence of the proximal point method for quasiconvex functions on Hadamard manifolds. ESAIM Control Optim. Cal. Var. 18(2), 483–500 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Papa Quiroz, E.A., Quispe, E.M., Oliveira, P.R.: Steepest descent method with a generalized Armijo search for quasiconvex functions on Riemannian manifolds. J. Math. Anal. Appl. 341(1), 467–477 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Papa Quiroz, E.A., Oliveira, P.R.: New results on linear optimization through diagonal metrics and Riemannian geometry tools. Technical report, ES-645/04. Federal University of Rio de Janeiro, Pesc Coppe (2004)

  30. Papa Quiroz, E.A., Oliveira, P.R.: A new self-concordant barrier for the hypercube. J. Optim. Theory Appl. 135, 475–490 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Papa Quiroz, E.A., Oliveira, P.R.: Proximal point methods for quasiconvex and convex functions with Bregman distances on Hadamard manifolds. J. Convex Anal. 16, 49–69 (2009)

    MathSciNet  MATH  Google Scholar 

  32. Pouryayevali, M.R., Radmanesh, H.: Minimizing curves in prox-regular subsets of Riemannian manifolds. Set Valued Var. Anal. 30(2), 677–694 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rapcsák, T.: Smooth Nonlinear Optimization in \({\mathbb{R} }^n\). Springer, Berlin (2013)

    Google Scholar 

  34. Sadeghieh, A., Kanzi, N., Caristi, G.: On stationarity for nonsmooth multiobjective problems with vanishing constraints. J. Glob. Optim. 82, 929–949 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  35. Shaker Ardakani, J., Farahmand Rad, S.H., Kanzi, N., Reihani Ardabili, P.: Necessary stationary conditions for multiobjective optimization problems with nondifferentiable convex vanishing constraints. Iran. J. Sci. Technol. Trans. Sci. 43, 2913–2919 (2019)

    Article  MathSciNet  Google Scholar 

  36. Treanţă, S., Mishra, P., Upadhyay, B.B.: Minty variational principle for nonsmooth interval-valued vector optimization problems on Hadamard manifolds. Mathematics 10, 523 (2022)

    Article  Google Scholar 

  37. Treanţă, S., Upadhyay, B.B., Ghosh, A., Nonlaopon, K.: Optimality conditions for multiobjective mathematical programming problems with equilibrium constraints on Hadamard manifolds. Mathematics 10, 3516 (2022)

    Article  Google Scholar 

  38. Tung, L.T., Tam, D.H.: Optimality conditions and duality for multiobjective semi-infinite programming on Hadamard manifolds. Bull. Iran. Math. Soc. 48, 2191–2219 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  39. Udrişte, C.: Convex Functions and Optimization Methods on Riemannian Manifolds. Springer, Berlin (2013)

    MATH  Google Scholar 

  40. Upadhyay, B.B., Ghosh, A., Mishra, P., Treanţă, S.: Optimality conditions and duality for multiobjective semi-infinite programming problems on Hadamard manifolds using generalized geodesic convexity. RAIRO Oper. Res. 56(4), 2037–2065 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  41. Upadhyay, B.B., Mishra, S.K., Porwal, S.K.: Explicitly geodesic B-preinvex functions on Riemannian Manifolds. Trans. Math. Program. Appl. 2(1), 1–14 (2015)

    Google Scholar 

  42. Upadhyay, B.B., Stancu-Minasian, I.M., Mishra, P., Mohapatra, R.N.: On generalized vector variational inequalities and nonsmooth vector optimization problems on Hadamard manifolds involving geodesic approximate convexity. Adv. Nonlinear Var. Inequal. 25, 1–25 (2022)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their careful reading of the paper and constructive suggestions, which have substantially improved the paper in its present form. The first author is supported by Science and Engineering Research Board (SERB), Government of India, under Mathematical Research Impact Centric Support (MATRICS) scheme, through Grant Number MTR/2022/000925. The second author is supported by the Council of Scientific and Industrial Research (CSIR), New Delhi, India, through Grant Number 09/1023(0044)/2021-EMR-I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balendu Bhooshan Upadhyay.

Ethics declarations

Conflict of interest

The authors declare that there is no actual or potential conflict of interest in relation to this article. The authors also declare that no data, text, or theories by others are presented in this paper without proper acknowledgment.

Additional information

Communicated by Gabriele Steidl.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhyay, B.B., Ghosh, A. On Constraint Qualifications for Mathematical Programming Problems with Vanishing Constraints on Hadamard Manifolds. J Optim Theory Appl 199, 1–35 (2023). https://doi.org/10.1007/s10957-023-02207-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-023-02207-2

Keywords

Mathematics Subject Classification

Navigation