Skip to main content
Log in

Subgradient Method for Convex Feasibility on Riemannian Manifolds

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, a subgradient type algorithm for solving convex feasibility problem on Riemannian manifold is proposed and analysed. The sequence generated by the algorithm converges to a solution of the problem, provided the sectional curvature of the manifold is non-negative. Moreover, assuming a Slater type qualification condition, we analyse a variant of the first algorithm, which generates a sequence with finite convergence property, i.e., a feasible point is obtained after a finite number of iterations. Some examples motivating the application of the algorithm for feasibility problems, nonconvex in the usual sense, are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Combettes, P.L.: The convex feasibility problem in image recovery. Adv. Imaging Electron Phys. 95, 155–270 (1996)

    Article  Google Scholar 

  2. Censor, Y., Altschuler, M.D., Powlis, W.D.: On the use of Cimmino’s simultaneous projections method for computing a solution of the inverse problem in radiation therapy treatment planning. Inverse Probl. 4, 607–623 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Marks, L.D., Sinkler, W., Landree, E.: A feasible set approach to the crystallographic phase problem. Acta Crystallogr. A, Found. Crystallogr. 55, 601–612 (1999)

    Article  Google Scholar 

  4. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367–426 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Butnariu, D., Censor, Y., Gurfil, P., Hadar, E.: On the behavior of subgradient projections methods for convex feasibility problems in Euclidean spaces. SIAM J. Optim. 19, 786–807 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Butnariu, D., Iusem, A., Burachik, R.: Iterative methods of solving stochastic convex feasibility problems and applications. Comput. Optim. Appl. 15, 269–307 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. O’Hara, J.G., Pillay, P., Xu, H.K.: Iterative approaches to convex feasibility problems in Banach spaces. Nonlinear Anal. 64, 2022–2042 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Shor, N.Z.: Minimization Algorithms for Non-differentiable Function. Springer, Berlin (1985)

    Book  Google Scholar 

  9. Polyak, B.T.: Minimization of nonsmooth functionals. U.S.S.R. Comput. Math. Math. Phys. 9, 14–29 (1969)

    Article  Google Scholar 

  10. Alber, Ya.I., Iusem, A.N., Solodov, M.V.: On the projected subgradient method for nonsmooth convex optimization in a Hilbert space. Math. Program. 81(1), 23–35 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bertsekas, D.P., Nedic, A.: Incremental subgradient methods for nondifferentiable optimization. SIAM J. Optim. 56(1), 109–138 (2001)

    MathSciNet  Google Scholar 

  12. Burachik, R.S., Iusem, A.N., Melo, J.G.: A primal dual modified subgradient algorithm with sharp Lagrangian. J. Glob. Optim. 46(3), 347–361 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Censor, Y., Lent, A.: Cyclic subgradient projections. Math. Program. 24, 233–235 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  14. Udriste, C.: Convex functions and optimization algorithms on Riemannian manifolds. In: Mathematics and Its Applications, vol. 297. Kluwer Academic, Dordrecht (1994)

    Google Scholar 

  15. Alvarez, F., Bolte, J., Munier, J.: A unifying local convergence result for Newton’s method in Riemannian manifolds. Found. Comput. Math. 8, 197–226 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Baker, C.G., Absil, P.-A., Gallivan, K.A.: An implicit trust-region method on Riemannian manifolds. IMA J. Numer. Anal. 28, 665–689 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bento, G.C., Ferreira, O.P., Oliveira, P.R.: Local convergence of the proximal point method for a special class of nonconvex functions on Hadamard manifolds. Nonlinear Anal. 73, 564–572 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, C., López, G., Martín-Márquez, V.: Monotone vector fields and the proximal point algorithm on Hadamard manifolds. J. Lond. Math. Soc. 79, 663–683 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ferreira, O.P.: Proximal subgradient and a characterization of Lipschitz function on Riemannian manifolds. J. Math. Anal. Appl. 313, 587–597 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ferreira, O.P.: Dini derivative and a characterization for Lipschitz and convex functions on Riemannian manifolds. Nonlinear Anal. 68, 1517–1528 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Ferreira, O.P., Oliveira, P.R.: Proximal point algorithm on Riemannian manifold. Optimization 51, 257–270 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, S.L., Li, C., Liou, Y.C., Yao, J.C.: Existence of solutions for variational inequalities on Riemannian manifolds. Nonlinear Anal. 71, 5695–5706 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Németh, S.Z.: Variational inequalities on Hadamard manifolds. Nonlinear Anal. 52, 1491–1498 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. da Cruz Neto, J.X., Ferreira, O.P., Lucâmbio Pérez, L.R., Németh, S.Z.: Convex-and monotone-transformable mathematical programming problems and a proximal-like point algorithm. J. Glob. Optim. 35, 53–69 (2006)

    Article  MATH  Google Scholar 

  25. Ledyaev, Yu.S., Zhu, Q.J.: Nonsmooth analysis on smooth manifolds. Trans. Am. Math. Soc. 359, 3687–3732 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, J.H., Huang, S.C., Li, C.: Extended Newton’s Algorithm for mappings on Riemannian manifolds with values in a cone. Taiwan. J. Math. 13, 633–656 (2009)

    MathSciNet  MATH  Google Scholar 

  27. Wang, J.H., Lopez, G., Martin-Marquez, V., Li, C.: Monotone and accretive vector fields on Riemannian manifolds. J. Optim. Theory Appl. 146, 691–708 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, C., Wang, J.H.: Newton’s method for sections on Riemannian manifolds: generalized covariant α-theory. J. Complex. 24, 423–451 (2008)

    Article  MATH  Google Scholar 

  29. Wang, J.H., Dedieu, J.P.: Newton’s method on Lie groups: Smale’s point estimate theory under the γ-condition. J. Complex. 25, 128–151 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, J.H., Li, C.: Newton’s method on Lie groups with applications to optimization. IMA J. Numer. Anal. 31, 322–347 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, J.H.: Convergence of Newton’s method for sections on Riemannian manifolds. J. Optim. Theory Appl. 148(1), 125–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rapcsák, T.: Local convexity on smooth manifolds. J. Optim. Theory Appl. 127(1), 165–176 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rapcsák, T.: Geodesic convexity in nonlinear optimization. J. Optim. Theory Appl. 69(1), 169–183 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ferreira, O.P., Oliveira, P.R.: Subgradient algorithm on Riemannian manifolds. J. Optim. Theory Appl. 97, 93–104 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  35. da Cruz Neto, J.X., de Lima, L.L., Oliveira, P.R.: Geodesic algorithms in Riemannian geometry. Balk. J. Geom. Appl. 3, 89–100 (1998)

    MATH  Google Scholar 

  36. do Carmo, M.P.: Riemannian Geometry. Birkhauser, Boston (1992)

    MATH  Google Scholar 

  37. Sakai, T.: Riemannian Geometry. Translations of Mathematical Monographs, vol. 149. Am. Math. Soc., Providence (1996)

    MATH  Google Scholar 

  38. Rapcsák, T.: Smooth Nonlinear Optimization in ℝn. Kluwer Academic, Dordrecht (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jefferson G. Melo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bento, G.C., Melo, J.G. Subgradient Method for Convex Feasibility on Riemannian Manifolds. J Optim Theory Appl 152, 773–785 (2012). https://doi.org/10.1007/s10957-011-9921-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-011-9921-4

Keywords

Navigation