Skip to main content
Log in

Notes on Some Constraint Qualifications for Mathematical Programs with Equilibrium Constraints

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We study the constraint qualifications for mathematical programs with equilibrium constraints (MPEC). Firstly, we investigate the weakest constraint qualifications for the Bouligand and Mordukhovich stationarities for MPEC. Then, we show that the MPEC relaxed constant positive linear dependence condition can ensure any locally optimal solution to be Mordukhovich stationary. Finally, we give the relations among the existing MPEC constraint qualifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ye, J.J., Zhu, D.L., Zhu, Q.J.: Exact penalization and necessary optimality conditions for generalized bilevel programming problems. SIAM J. Optim. 7, 481–507 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Luo, Z.Q., Pang, J.S., Ralph, D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  3. Outrata, J.V., Kocvara, M., Zowe, J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints: Theory, Applications and Numerical Results. Kluwer Academic Publishers, Boston (1998)

    MATH  Google Scholar 

  4. Fukushima, M., Lin, G.H.: Smoothing methods for mathematical programs with equilibrium constraints. In: Proceedings of the ICKS’04, pp. 206–213. IEEE Comput. Soc., Los Alamitos (2004)

    Google Scholar 

  5. Flegel, M.L., Kanzow, C.: A direct proof for M-stationarity under MPEC-GCQ for mathematical programs with equilibrium constraints. In: Dempe, S., Kalashnikov, V. (eds.) Optimization with Multivalued Mappings, vol. 2, pp. 111–122. Springer, New York (2006)

    Chapter  Google Scholar 

  6. Kanzow, C., Schwartz, A.: Mathematical programs with equilibrium constraints: enhanced fritz john conditions, new constraint qualifications and improved exact penalty results. SIAM J. Optim. 20, 2730–2753 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Scheel, H.S., Scholtes, S.: Mathematical programs with complementarity constraints: stationarity, optimality, and sensitivity. Math. Oper. Res. 25, 1–22 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ye, J.J.: Constraint qualifications and necessary optimality conditions for optimization problems with variational inequality constraints. SIAM J. Optim. 10, 943–962 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ye, J.J.: Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints. J. Math. Anal. Appl. 307, 350–369 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ye, J.J., Ye, X.Y.: Necessary optimality conditions for optimization problems with variational inequality constraints. Math. Oper. Res. 22, 977–997 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fletcher, R., Leyffer, S., Ralph, D., Scholtes, S.: Local convergence of SQP methods for mathematical programs with equilibrium constraints. SIAM J. Optim. 17, 259–286 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lin, G.H., Guo, L., Ye, J.J.: Solving mathematical programs with equilibrium constraints as constrained equations (submitted)

  13. Hu, X., Ralph, D.: Convergence of a penalty method for mathematical programming with equilibrium constraints. J. Optim. Theory Appl. 123, 365–390 (2004)

    Article  MathSciNet  Google Scholar 

  14. Scholtes, S.: Convergence properties of a regularization scheme for mathematical programs with complementarity constraints. SIAM J. Optim. 11, 918–936 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guo, L., Lin, G.H., Ye, J.J.: Second order optimality conditions for mathematical programs with equilibrium constraint (submitted)

  16. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. I. Basic Theory. Grundlehren der Mathematischen Wissenschaften, vol. 330. Springer, Berlin (2006)

    Google Scholar 

  17. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  18. Flegel, M.L., Kanzow, C.: On M-stationary points for mathematical programs with equilibrium constraints. J. Math. Anal. Appl. 310, 286–302 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ioffe, A.D., Outrata, J.V.: On metric and calmness qualification conditions in subdifferential calculus. Set-Valued Anal. 16, 199–227 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Andreani, R., Haeser, G., Schuverdt, M.L., Siliva, J.S.: A relaxed constant positive linear dependence constraint qualification and applications. Math. Program. (2011). doi:10.1007/s10107-011-0456-0

    Google Scholar 

  21. Ye, J.J., Zhang, J.: Enhanced Karush–Kuhn–Tucker condition for mathematical programs with equilibrium constraints (submmited)

  22. Flegel, M.L., Kanzow, C.: On the guignard constraint qualification for mathematical programs with equilibrium constraints. Optimization 54, 517–534 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Moldovan, A., Pellegrini, L.: On regularity for constrained extremum problems. Part 2. Necessary optimality conditions. J. Optim. Theory Appl. 142, 165–183 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hoheisel, T., Kanzow, C., Schwartz, A.: Theoretical and numerical comparison of relaxation methods for mathematical programs with complementarity constraints. Math. Program. (2011). doi:10.1007/s10107-011-0488-5

    MATH  Google Scholar 

  25. Kanzow, C., Schwartz, A.: A new regularization method for mathematical programs with complementarity constraints with strong convergence properties (submitted)

  26. Minchenko, L., Stakhovski, S.: Parametric nonlinear programming problems under the relaxed constant rank condition. SIAM J. Optim. 21, 314–332 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to two anonymous referees and Professor Franco Giannessi for their helpful suggestions and comments.

This work was supported in part by NSFC Grant #11071028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-Hua Lin.

Additional information

Communicated by Nobuo Yamashita.

Appendices

Appendix A: Existing Constraint Qualifications for MPEC

The constraint qualifications given for MPEC in the literature include the following ones: Let x X.

(a):

[7] We say that the MPEC linear independence constraint qualification (MPEC-LICQ) holds at x iff the family of gradients

is linearly independent.

(b):

[9, 15] We say that the MPEC linear constraint qualification (MPEC Linear CQ) holds iff all functions {g,h,G,H} in the constraints are affine.

(c):

[6, 7] We say that the MPEC Mangasarian–Fromovitz constraint qualification (MPEC-MFCQ) holds at x iff there is no nonzero multipliers {λ,μ,u,v} such that

(d):

[1, 6, 9] We say that the MPEC no nonzero abnormal multiplier constraint qualification (MPEC-NNAMCQ) holds at x iff there is no nonzero multipliers {λ,μ,u,v} such that

(e):

[15, 24] We say that the MPEC constant rank constraint qualification (MPEC-CRCQ) holds at x iff there exists δ>0 such that, for any \(\mathcal{I}_{1}\subseteq \mathcal{I}_{g}^{*}, \mathcal{I}_{2}\subseteq\{1,\ldots, q\}\), \(\mathcal{I}_{3}\subseteq\mathcal{I}^{*}\cup\mathcal{J}^{*}\), and \(\mathcal{I}_{4} \subseteq \mathcal{K}^{*}\cup\mathcal{J}^{*}\), the family of gradients

has the same rank for each \(x\in\mathcal{B}_{\delta}(x^{*})\).

(f):

[15] We say that the MPEC relaxed constant rank constraint qualification (MPEC-RCRCQ) holds at x iff there exists δ>0 such that, for any \(\mathcal{I}_{1}\subseteq \mathcal{I}_{g}^{*}\) and \(\mathcal{I}_{2}, \mathcal{I}_{3}\subseteq \mathcal{J}^{*} \), the family of gradients

has the same rank for each \(x\in\mathcal{B}_{\delta}(x^{*})\).

(g):

[24, 25] we say that the MPEC constant positive linear dependent condition (MPEC-CPLD) holds at x X iff, for any \(\mathcal{I}_{1}\subseteq\mathcal{I}_{g}^{*}\), \(\mathcal{I}_{2}\subseteq\{1,\ldots, q\}\), \(\mathcal{I}_{3}\subseteq\mathcal{I}^{*}\cup\mathcal{J}^{*}\), and \(\mathcal{I}_{4} \subseteq\mathcal{K}^{*}\cup\mathcal{J}^{*}\), whenever there exist multipliers {λ,μ,u,v}, not all zero, with λ i ≥0 for each \(i\in\mathcal{I}_{1}\), such that

there exists a neighborhood B(x ) of x such that, for any xB(x ), the vectors

are linearly dependent.

(g′):

[15, 21] We say that the MPEC constant positive linear dependent condition (MPEC-CPLD) holds at x X iff, for any \(\mathcal{I}_{1}\subseteq\mathcal{I}_{g}^{*}\), \(\mathcal{I}_{2}\subseteq\{1,\ldots, q\}\), \(\mathcal{I}_{3}\subseteq\mathcal{I}^{*}\cup\mathcal{J}^{*}\), and \(\mathcal{I}_{4} \subseteq\mathcal{K}^{*}\cup\mathcal{J}^{*}\), whenever there exist multipliers {λ,μ,u,v}, not all zero, with λ i ≥0 for each \(i\in\mathcal{I}_{1}\), either u l v l =0 or u l >0,v l >0 for each \(l \in\mathcal{J}^{*}\), such that

there exists a neighborhood B(x ) of x such that, for any xB(x ), the vectors

are linearly dependent.

(h):

[6] We say that the MPEC pseudonormality holds at x iff there is no multipliers {λ,μ,u,v} such that

  • g(x )λ+∇h(x )μ−∇G(x )u−∇H(x )v=0;

  • \(\lambda\geq0,g(x^{*})^{T}\lambda= 0, u_{i}=0\ \mathrm{for}\ i\in\mathcal{K}^{*}, v_{i}=0\ \mathrm{for}\ i\in\mathcal{I}^{*},\ \mathrm{either}\ u_{i}v_{i}=0 \mathrm{or} \ u_{i}> 0, v_{i}> 0\ \mathrm{for}\ i\in\mathcal{J}^{*}\);

  • there exists a sequence {x k}→x such that, for each k,

    $$\sum_{i=1}^p \lambda_i \nabla g_i\bigl(x^k\bigr) + \sum _{j=1}^q\mu_j \nabla h_j \bigl(x^k\bigr) - \sum_{i=1}^m u_\imath\nabla G_\imath\bigl(x^k\bigr) - \sum _{i=1}^m v_\jmath\nabla H_\jmath\bigl(x^k\bigr)>0. $$
(i):

[6] We say that the MPEC quasinormality holds at x iff there is no nonzero multipliers {λ,μ,u,v} such that

  • g(x )λ+∇h(x )μ−∇G(x )u−∇H(x )v=0;

  • \(\lambda\geq0, g(x^{*})^{T}\lambda= 0, u_{i}=0\ \mathrm{for}\ i\in\mathcal{K}^{*}, v_{i}=0\ \mathrm{for} \ i\in\mathcal{I}^{*},\ \mathrm{either}\ u_{i}v_{i}=0 \mathrm{or} \ u_{i}> 0, v_{i}> 0 \ \mathrm{for}\ i\in\mathcal{J}^{*}\);

  • there exists a sequence {x k}→x such that, for each k,

(j):

[9, 18] We say that the MPEC Abadie constraint qualification (MPEC Abadie CQ) holds at x iff \(\mathcal{T}_{X}(x^{*})=\mathcal{L}_{\mathit{MPEC}}(x^{*})\).

(k):

[5] We say that the MPEC Guignard constraint qualification (MPEC Guignard CQ) holds at x iff \(\mathcal{T}_{X}(x^{*})^{o}=\mathcal{L}_{\mathit{MPEC}}(x^{*})^{o}\).

It is easy to see that the MPEC-CPLD given in [15, 21] is weaker than the one given in [24, 25]. Note that the MPEC-CPLD in Fig. 1 is understood in the sense of [24, 25].

Appendix B: Proof of “MPEC-RCRCQ ⟹ MPEC Abadie CQ”

Suppose that the MPEC-RCRCQ holds at x X. Let

$$\mathcal{P}\bigl(\mathcal{J}^*\bigr):=\bigl\{\bigl(\mathcal{J}^*_1, \mathcal{J}^*_2\bigr) \mid \mathcal{J}^*_1\cup \mathcal{J}^*_2=\mathcal{J}^*, \mathcal{J}^*_1\cap \mathcal{J}^*_2=\emptyset\bigr\}. $$

For each partition \((\mathcal{J}^{*}_{1},\mathcal{J}^{*}_{2})\in\mathcal{P}(\mathcal{J}^{*})\), we consider the following restricted problem associated with (1):

(13)

Denote by \(X(\mathcal{J}^{*}_{1},\mathcal{J}^{*}_{2})\) the feasible region of (13). It is not difficult to see that

(14)

where \(\mathcal{L}_{X(\mathcal{J}^{*}_{1},\mathcal{J}^{*}_{2})}(x^{*})\) is the linearized cone of \(X(\mathcal{J}^{*}_{1},\mathcal{J}^{*}_{2})\) at x .

Since x satisfies the MPEC-RCRCQ, the RCRCQ holds at x for each partition \((\mathcal{J}^{*}_{1},\mathcal{J}^{*}_{2})\in\mathcal{P}(\mathcal{J}^{*})\). It follows from Lemma 6 in [26] that

This, together with (14), indicates that \(\mathcal{T}_{X}(x^{*})=\mathcal{L}_{\mathit{MPEC}}(x^{*})\) and hence the MPEC Abadie CQ holds at x .

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, L., Lin, GH. Notes on Some Constraint Qualifications for Mathematical Programs with Equilibrium Constraints. J Optim Theory Appl 156, 600–616 (2013). https://doi.org/10.1007/s10957-012-0084-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-0084-8

Keywords

Navigation