Skip to main content
Log in

Pontryagin-Type Conditions for Optimal Muscular Force Response to Functional Electrical Stimulations

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In biomechanics, recent mathematical models allow one to predict the muscular force response to functional electrical stimulations. The main concern of the present paper is to deal with the computation of optimized electrical pulses trains (for example in view of maximizing the final force response). Using the fact that functional electrical stimulations are modeled as Dirac pulses, our problem is rewritten as an optimal sampled-data control problem, where the control parameters are the pulses amplitudes and the pulses times. We establish the corresponding Pontryagin first-order necessary optimality conditions and we show how they can be used in view of numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Archibald Vivian Hill (1886–1977) was the co-recipient of 1922 Nobel prize in Medicine for this equation.

References

  1. Law, L.F., Shields, R.: Mathematical models of human paralyzed muscle after long-term training. J. Biomech. 40, 2587–2595 (2007)

    Article  Google Scholar 

  2. Ding, J., Binder-Macleod, S.A., Wexler, A.S.: Two-step, predictive, isometric force model tested on data from human and rat muscles. J. Appl. Physiol. 85, 2176–2189 (1998)

    Article  Google Scholar 

  3. Ding, J., Wexler, A.S., Binder-Macleod, S.A.: Development of a mathematical model that predicts optimal muscle activation patterns by using brief trains. J. Appl. Physiol. 88, 917–925 (2000)

    Article  Google Scholar 

  4. Gesztelyi, R., Zsuga, J., Kemeny-Beke, A., Varga, B., Juhasz, B., Tosaki, A.: The Hill equation and the origin of quantitative pharmacology. Arch. Hist. Exact Sci. 66(4), 427–438 (2012)

    Article  Google Scholar 

  5. Ding, J., Wexler, A.S., Binder-Macleod, S.A.: A predictive model of fatigue in human skeletal muscles. J. Appl. Physiol. 89, 1322–1332 (2000)

    Article  Google Scholar 

  6. Ding, J., Wexler, A.S., Binder-Macleod, S.A.: Mathematical models for fatigue minimization during functional electrical stimulation. J. Electromyogr. Kinesiol. 13, 575–588 (2003)

    Article  Google Scholar 

  7. Wilson, E.: Force response of locust skeletal muscle. Southampton University, Ph.D. thesis (2011)

  8. Bourdin, L., Trélat, E.: Optimal sampled-data control, and generalizations on time scales. Math. Cont. Relat. Fields 6, 53–94 (2016)

    Article  MathSciNet  Google Scholar 

  9. Bourdin, L., Trélat, E.: Pontryagin maximum principle for optimal sampled-data control problems. In: Proceedings of 16th IFAC Workshop on Control Applications of Optimization CAO’2015 (2015)

    Article  Google Scholar 

  10. Bourdin, L., Dhar, G.: Continuity/constancy of the Hamiltonian function in a Pontryagin maximum principle for optimal sampled-data control problems with free sampling times. Math. Control Signals Syst. (2019). https://doi.org/10.1007/s00498-019-00247-6

    Article  MathSciNet  MATH  Google Scholar 

  11. Bonnans, F., Giorgi, D., Maindrault, S., Martinon, P., Grélard, V.: Bocop—a collection of examples. Inria Research Report, Project-Team Commands, 8053 (2014)

  12. Cots, O.: Contrôle optimal géométrique : méthodes homotopiques et applications. Ph.D. thesis, Université de Bourgogne, Dijon (2012)

  13. Bakir, T., Bonnard, B., Rouot, J.: A case study of optimal input–output system with sampled-data control: Ding et al. force and fatigue muscular control model. Netw. Heterog. Med. 14(1), 79–100 (2019)

    Article  MathSciNet  Google Scholar 

  14. Yochum, M.: Contribution à la conception d’un électromyostimulateur intelligent. Thèse de doctorat, Instrumentation et informatique de l’image Dijon (2013)

  15. Bakir, T.: Contribution à la modélisation, l’estimation et la commande de systèmes non linéaires dans les domaines de la cristallisation et de l’électrostimulation musculaire. HDR Université de Bourgogne (2018)

  16. Gelfand, I.M., Fomin, S.V.: Calculus of Variations. Prentice Hall Inc., Englewood Cliffs (1963)

    MATH  Google Scholar 

  17. Schättler, H., Ledzewicz, U.: Geometric Optimal Control. Theory, Methods and Examples. Interdisciplinary Applied Mathematics, vol. 38. Springer, New York (2012)

    Book  Google Scholar 

  18. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Wiley, New York (1962)

    MATH  Google Scholar 

  19. Trélat, E.: Contrôle Optimal: théorie et Applications. Vuibert, Paris (2005)

    MATH  Google Scholar 

  20. Vinter, R.: Optimal control. Systems & Control: Foundations and Applications. Birkhäuser, Boston (2000)

    MATH  Google Scholar 

  21. Rackauckas, C., Nie, Q.: Differentialequations.jl—a performant and feature-rich ecosystem for solving differential equations in julia. J. Open Res. Softw 5, 15 (2017)

    Article  Google Scholar 

  22. Hermes, H.: Lie algebras of vector fields and local approximation of attainable sets. SIAM J. Control Optim. 16(5), 715–727 (1978)

    Article  MathSciNet  Google Scholar 

  23. Bourdin, L., Dhar, G.: Optimal sampled-data controls with running inequality state constraints—Pontryagin maximum principle and bouncing trajectory phenomenon (2019). Submitted—available on HAL (hal id: hal-02160231)

Download references

Acknowledgements

This research paper benefited from the support of the FMJH Program PGMO and from the support of EDF, Thales, Orange. T. Bakir, B. Bonnard and J. Rouot are partially supported by the Labex AMIES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérémy Rouot.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Physical Descriptions of the Force–Fatigue Model

Appendix: Physical Descriptions of the Force–Fatigue Model

Table 3 provides the values of the constants and the physical descriptions of the variables for the force–fatigue model presented in Sect. 3.

Table 3 Values of the constant parameters in the Ding et al. model

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakir, T., Bonnard, B., Bourdin, L. et al. Pontryagin-Type Conditions for Optimal Muscular Force Response to Functional Electrical Stimulations. J Optim Theory Appl 184, 581–602 (2020). https://doi.org/10.1007/s10957-019-01599-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-019-01599-4

Keywords

Mathematics Subject Classification

Navigation