Skip to main content

Bio-Inspired Imprecise Impedance Control of Muscle-Driven Robotic Limbs

  • Conference paper
  • First Online:
Robotics in Natural Settings (CLAWAR 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 530))

Included in the following conference series:

Abstract

Breaking up with classical, precision-based control, the work at hand introduces a whole new bio-inspired control philosophy, the so-called imprecise impedance control. By combining technical and biological research observations, a very simple, but effective way of artificial, muscular control based on electrical series elastic actuators is developed. The presented control structure includes the whole drive train starting from abstract, digital control commands and ending with the electrical current that is given to the motors. Experimental evaluation demonstrates the proper functioning of the control as well as its stability and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bouman, A., et al.: Autonomous spot: long-range autonomous exploration of extreme environments with legged locomotion. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2518–2525. IEEE, Las Vegas (2020)

    Google Scholar 

  2. Brown, I.E., Loeb, G.E.: A reductionist approach to creating and using neuromusculoskeletal models. In: Winters, J.M., Crago, P.E. (eds.) Biomechanics and Neural Control of Posture and Movement, pp. 148–163. Springer, New York (2000). https://doi.org/10.1007/978-1-4612-2104-3_10

    Chapter  Google Scholar 

  3. Haeufle, D.F.B., Wochner, I., Holzmüller, D., Driess, D., Günther, M., Schmitt, S.: Muscles reduce neuronal information load: quantification of control effort in biological vs. robotic pointing and walking. Front. Robot. AI 7, 77 (2020)

    Article  Google Scholar 

  4. Hutter, M., et al.: ANYmal - a highly mobile and dynamic quadrupedal robot. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 38–44. IEEE, Daejeon (2016)

    Google Scholar 

  5. Luksch, T.: Human-like control of dynamically walking bipedal robots. RRLab Dissertations, Verlag Dr. Hut (2010)

    Google Scholar 

  6. Mihailoff, G., Haines, D.: Chapter 24 - Motor system i: peripheral sensory, brainstem, and spinal influence on anterior horn neurons. In: Fundamental Neuroscience for Basic and Clinical Applications, 5th edn., pp. 346–359.e1. Elsevier (2018)

    Google Scholar 

  7. Mussa-Ivaldi, F., Hogan, N., Bizzi, E.: Neural, mechanical, and geometric factors subserving arm posture in humans. J. Neurosci. 5(10), 2732–2743 (1985)

    Article  Google Scholar 

  8. Nejadfard, A., Schütz, S., Mianowski, K., Vonwirth, P., Berns, K.: Design of the musculoskeletal leg CARL based on the physiology of mono-articular and biarticular muscles in the human leg. Bioinspir. Biomimet. 14(6), 066002 (2019)

    Article  Google Scholar 

  9. Nejadfard, A., Schütz, S., Vonwirth, P., Mianowski, K., Berns, K.: Coordination of the biarticular actuators based on instant power in an explosive jump experiment. In: IEEE International Conference on Advanced Intelligent Mechatronics (AIM) (2018)

    Google Scholar 

  10. Nejadfard, A., Schütz, S., Mianowski, K., Vonwirth, P., Berns, K.: Moment arm analysis of the biarticular actuators in compliant robotic leg Carl. In: Vouloutsi, V., et al. (eds.) Living Machines 2018. LNCS (LNAI), vol. 10928, pp. 348–360. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95972-6_37

    Chapter  Google Scholar 

  11. Paine, N., et al.: Actuator control for the NASA-JSC Valkyrie humanoid robot: a decoupled dynamics approach for torque control of series elastic robots. J. Field Robot. 32(3), 378–396 (2015)

    Article  Google Scholar 

  12. Reher, J., Cousineau, E.A., Hereid, A., Hubicki, C.M., Ames, A.D.: Realizing dynamic and efficient bipedal locomotion on the humanoid robot DURUS. In: 2016 IEEE International Conference on Robotics and Automation, pp. 1794–1801 (2016)

    Google Scholar 

  13. Schütz, S.: CARL - a compliant robotic leg designed for human-like bipedal locomotion. Doctoralthesis, University of Kaiserslautern, Kaiserslautern (2020)

    Google Scholar 

  14. Schütz, S., Mianowski, K., Kotting, C., Nejadfard, A., Reichardt, M., Berns, K.: RRLAB SEA – a highly integrated compliant actuator with minimised reflected inertia. In: 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pp. 252–257. IEEE (2016)

    Google Scholar 

  15. Schütz, S., Nejadfard, A., Mianowski, K., Vonwirth, P., Berns, K.: CARL – a compliant robotic leg featuring mono- and biarticular actuation. In: IEEE-RAS International Conference on Humanoid Robots (2017)

    Google Scholar 

  16. Semini, C., et al.: Towards versatile legged robots through active impedance control. Int. J. Robot. Res. 34(7), 1003–1020 (2015)

    Article  Google Scholar 

  17. Seok, S., Wang, A., Chuah, M.Y., Otten, D., Lang, J., Kim, S.: Design principles for highly efficient quadrupeds and implementation on the MIT Cheetah robot. In: 2013 IEEE International Conference on Robotics and Automation, pp. 3307–3312. IEEE, Karlsruhe (2013)

    Google Scholar 

  18. Sharbafi, M.A., et al.: A new biarticular actuator design facilitates control of leg function in BioBiped3. Bioinspir. Biomimet. 11(4), 046003 (2016)

    Article  Google Scholar 

  19. Vonwirth, P., Berns, K.: Continuous inverse kinematics in singular position. In: Chugo, D., Tokhi, M.O., Silva, M.F., Nakamura, T., Goher, K. (eds.) CLAWAR 2021. LNNS, vol. 324, pp. 24–36. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-86294-7_3

    Chapter  Google Scholar 

  20. Winter, D.A.: Biomechanics and Motor Control of Human Movement, 4th edn. Wiley, Hoboken (2009)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Vonwirth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vonwirth, P., Berns, K. (2023). Bio-Inspired Imprecise Impedance Control of Muscle-Driven Robotic Limbs. In: Cascalho, J.M., Tokhi, M.O., Silva, M.F., Mendes, A., Goher, K., Funk, M. (eds) Robotics in Natural Settings. CLAWAR 2022. Lecture Notes in Networks and Systems, vol 530. Springer, Cham. https://doi.org/10.1007/978-3-031-15226-9_7

Download citation

Publish with us

Policies and ethics