Skip to main content
Log in

On the Generic Structure and Stability of Stackelberg Equilibria

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We consider a noncooperative Stackelberg game, where the two players choose their strategies within domains \(X\subseteq {{\mathbb {R}}}^m\) and \(Y\subseteq {{\mathbb {R}}}^n\). Assuming that the cost functions FG for the two players are sufficiently smooth, we study the structure of the best reply map for the follower and the optimal strategy for the leader. Two main cases are considered: either \(X=Y=[0,1]\), or \(X={{\mathbb {R}}}, Y={{\mathbb {R}}}^n\) with \(n\ge 1\). Using techniques from differential geometry, including a multi-jet version of Thom’s transversality theorem, we prove that, for an open dense set of cost functions \(F\in {{\mathcal {C}}}^2\) and \(G\in {{\mathcal {C}}}^3\), the Stackelberg equilibrium is unique and is stable w.r.t. small perturbations of the two cost functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. von Stackelberg, H.: The Theory of the Market Economy. Oxford University Press, Oxford (1952)

    Google Scholar 

  2. Basar, T., Olsder, G.J.: Dynamic Noncooperative Game Theory, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (1999)

    MATH  Google Scholar 

  3. Leitmann, G.: On generalized Stackelberg strategies. J. Optim. Theory Appl. 26, 637–643 (1978)

    Article  MathSciNet  Google Scholar 

  4. Breton, M., Alj, A., Haurie, A.: Sequential Stackelberg equilibrium in two-person games. J. Optim. Theory Appl. 59, 71–97 (1988)

    Article  MathSciNet  Google Scholar 

  5. Bressan, A.: Noncooperative differential games. Milan J. Math. 79, 357–427 (2011)

    Article  MathSciNet  Google Scholar 

  6. Lignola, M.B., Morgan, J.: Topological existence and stability for Stackelberg problems. J. Optim. Theory Appl. 84, 145–169 (1995)

    Article  MathSciNet  Google Scholar 

  7. Marhfour, A.: Mixed solutions for weak Stackelberg problems: existence and stability results. J. Optim. Theory Appl. 105, 417–440 (2000)

    Article  MathSciNet  Google Scholar 

  8. Simaan, M., Cruz, J.: On the Stackelberg strategies in nonzero-sum games. J. Optim. Theory Appl. 11, 533–555 (1973)

    Article  MathSciNet  Google Scholar 

  9. Dontchev, A.L., Zolezzi, T.: Well-Posed Optimization Problems. Springer, Berlin (1993)

    Book  Google Scholar 

  10. Mallozzi, L., Morgan, J.: Weak Stackelberg problem and mixed solutions under data perturbations. Optimization 32, 269–290 (1995)

    Article  MathSciNet  Google Scholar 

  11. Bloom, J.M.: The Local Structure of Smooth Maps of Manifolds. B.A. Thesis, Harvard U (2004)

  12. Golubitsky, M., Guillemin, V.: Stable Mappings and Their Singularities. Springer, New York (1973)

    Book  Google Scholar 

  13. Conzález-Alcón, C., Borm, P., Hendrickx, R., et al.: A taxonomy of best-reply multifunctions in \(2\times 2\times 2\) trimatrix games. TOP 15(2), 297–306 (2007)

    Article  MathSciNet  Google Scholar 

  14. Evans, L.C.: Partial Differential Equations, 2nd edn. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  15. Dieudonné, J.: Foundations of Modern Analysis. Academic Press, New York (1969)

    MATH  Google Scholar 

  16. Arnold, V.: Catastrophe Theory, 3rd edn. Springer, Berlin (1992)

    Book  Google Scholar 

  17. Bressan, A., Jiang, Y.: Self-consistent feedback Stackelberg solutions for infinite horizon stochastic games. Dynam. Games Appl. (2019, submitted)

  18. Sard, A.: The measure of critical values of differentiable maps. Bull. Am. Math. Soc. 48, 883–890 (1942)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Bressan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Assume \(f:{{\mathbb {R}}}^m\mapsto {{\mathbb {R}}}^n\)

  • \(x\in {{\mathbb {R}}}^m\) is a critical point of f if the Jacobian matrix Df(x) has rank \(<n\).    Equivalently: if the differential Df(x) is not surjective.

  • \(y\in {{\mathbb {R}}}^n\) is a critical value of f  if \(y=f(x)\) for some critical point x.

Lemma A.1

(Sard’s Lemma [18]) For any \(f\in {{\mathcal {C}}}^\infty ({{\mathbb {R}}}^m;\,{{\mathbb {R}}}^n)\), the set of critical values has n-dimensional measure zero.

1.1 Transversality

Let \(f : X \mapsto Y\) be a smooth map of manifolds and let W be a submanifold of Y.

We say that f is transverse to W at a point p, and write \(f \cap \!\!\!\!|~ _p W\), if

  • either \( f ( p ) \notin W\),

  • or else \(f(p) \in W\) and   \((df)_p(T_pX) + T_{f(p)}W~= ~T_{f(p)}Y \).

We say that f is transverse to W, and write \(f \cap \!\!\!\!|~ W\), if \(f \cap \!\!\!\!|~ _p W\) for every \(p\in X\).

Example A.1

Take \(X={{\mathbb {R}}}^m\),   \(Y={{\mathbb {R}}}^n\) with \(m<n\). Assume \(W=\{y_0\}\) for some \(y_0\in {{\mathbb {R}}}^n\). In this case, transversality implies

  • either \( f (x) \not = y_0\),

  • or else \(f(x) = y_0\) and   rank \((Df(x)) = n\).

Since the second alternative is impossible, one has

$$\begin{aligned} f \cap \!\!\!\!|~ W\qquad \iff \qquad f(x)\not = y_0\qquad \hbox {for all}~x\in {{\mathbb {R}}}^2. \end{aligned}$$

Lemma A.2

(Transversality Lemma) Let \(X, \Theta \), and Y be smooth manifolds, W a submanifold of Y. Let \(\theta \mapsto \phi ^\theta \) be a smooth map which to each \(\theta \in \Theta \) associates a function \( \phi ^\theta \in {{\mathcal {C}}}^\infty (X,Y)\), and define \(\varPhi :X\times \Theta \mapsto Y\) by setting \(\varPhi (x,\theta )=\phi ^\theta (x)\).

If \(\varPhi \cap \!\!\!\!|~ W\) then the set \(\{\theta \in \Theta :~~\phi ^\theta \cap \!\!\!\!|~ W\}\) is dense in \(\Theta \).

1.2 A Multi-jet Transversality Theorem

We state here a version of the multi-jet transversality theorem which is used several times in the paper. In the following, for given integers \(m,n\ge 1\) we consider maps \(f:{{\mathbb {R}}}^{m+n}\mapsto {{\mathbb {R}}}\). Let \({{\mathcal {P}}}^k\) be the space of polynomials of degree \(\le k\) in the \(m+n\) variables \((x,y)\in {{\mathbb {R}}}^m\times {{\mathbb {R}}}^n\). Identifying a polynomial with its coefficients, clearly, \({{\mathcal {P}}}^k\) is a finite-dimensional vector space. The product space

$$\begin{aligned} J^k({{\mathbb {R}}}^{m+n};\,{{\mathbb {R}}})~:=~{{\mathbb {R}}}^{m+n}\times {{\mathcal {P}}}^k \end{aligned}$$

is a jet bundle over the space \(R^{m+n}\). Any function \(f:{{\mathbb {R}}}^{m+n}\mapsto {{\mathbb {R}}}\) determines a section of this bundle, defined as \(j^kf(x,y)~=~P^{(x,y)}\), where the polynomial \(P^{(x,y)}(\cdot )\) is the kth-order Taylor approximation of the function f at the point (xy).

Next, for \(s\ge 1\) we call

$$\begin{aligned} Z^{(s)}:= \Big \{(x,y_1,\ldots , y_s)\in {{\mathbb {R}}}^m\times {{\mathbb {R}}}^n\times \cdots \times {{\mathbb {R}}}^n\,:~ y_i\not = y_j~\hbox {for all}~~1\le i<j\le s\Big \}.\nonumber \\ \end{aligned}$$
(105)

Notice that \(Z^{(s)}\) is an open subset of a vector space of dimension \(m+sn\); hence it is a manifold. The set

$$\begin{aligned} \begin{array}{rl}J^k_s({{\mathbb {R}}}^{m+n};\,{{\mathbb {R}}})&{}=~\Big \{(x,y_1,\ldots , y_s, P_1,\ldots ,P_s)~\in ~ {{\mathbb {R}}}^m\times {{\mathbb {R}}}^n\times \cdots \times {{\mathbb {R}}}^n\times {{\mathcal {P}}}^k \times \cdots \times {{\mathcal {P}}}^k:\\ &{}\qquad y_i\not = y_j~~\hbox {for all}~~1\le i<j\le s\Big \} \end{array} \end{aligned}$$
(106)

is a kth-order jet bundle over \(Z^{(s)}\). Any smooth function \(f:{{\mathbb {R}}}^{m+n}\mapsto {{\mathbb {R}}}\) determines a section of this bundle defined as

$$\begin{aligned} j^k_s f(x, y_1,\ldots , y_s)~=~(Q^{(x, y_1)},~\ldots ~, Q^{(x, y_s)}), \end{aligned}$$
(107)

where \(Q^{(x, y_i)}\) is the polynomial of degree \(\le k\) determined by the kth-order Taylor approximation to f at the point \((x, y_i)\). We can now state a version of the multi-jet transversality theorem which is used in our paper. The proof is similar to the one on p. 57–59 of [12], with some simplifications due to the fact that our maps are defined on Euclidean spaces, rather than on general manifolds.

Theorem A.1

Let W be a smooth submanifold of \(J^k_s({{\mathbb {R}}}^{m+n};\,{{\mathbb {R}}})\). Then the set of functions \(f\in {{\mathcal {C}}}^\infty ({{\mathbb {R}}}^{m+n};\,{{\mathbb {R}}})\) which are transversal to W is dense, in the \({{\mathcal {C}}}^\infty \) topology.

Proof

1. Cover the open set \(Z^{(s)}\) with countably many open sets \(V_\nu , \nu \ge 1\), such that

  • If \((x, y_1,\ldots , y_s)\in V_\nu \) and \(({\tilde{x}}, {\tilde{y}}_1,\ldots , {\tilde{y}}_s)\in V_\nu \), then \(y_i\not = {\tilde{y}}_j\) for all \(1\le i<j\le s\).

Construct \({{\mathcal {C}}}^\infty \) functions \(\phi _\nu :{{\mathbb {R}}}^{m+n}\mapsto [0,1]\), \(\nu \ge 1\), with the following properties.

  • Supp\((\phi _\nu )\subset V_\nu \).

  • For each \(\nu \ge 1\), call \(V_\nu ' \subset V_\nu \) the interior of the set where \(\phi _\nu =1\). Then \(\bigcup _{\nu \ge 1} V_\nu '=Z^{(s)}\).

2. For each \(\nu \ge 1\), and any polynomials \(P_1,\ldots , P_s\) of degree \(\le k\), define the function

$$\begin{aligned} f^{(P)}(x,y)~=~f(x,y)+ \sum _{\ell =1}^s \phi _k(x,y) P_\ell (x,y_\ell ). \end{aligned}$$
(108)

We now consider the map

$$\begin{aligned} (x,y_1,\ldots , y_s, P_1,\ldots , P_s)~\mapsto ~\Big (j^k f^{(P)} (x, y_1),~ \ldots ~j^k f^{(P)} (x, y_s)\Big ). \end{aligned}$$
(109)

The right-hand sides are the coefficients of the kth-order Taylor approximations to the maps \((x,y)\mapsto f^{(P)}(x,y)\) at the points \((x, y_\ell )\). Since \(\phi _\nu \equiv 1\) on \(V'_\nu \), clearly, the differential of the map (109) has full rank. Hence this map is transversal to any manifold W, restricted to \(V_\nu '\). By the transversality theorem, there is a residual set \({{\mathcal {S}}}_\nu \subset {{\mathcal {C}}}^\infty ({{\mathbb {R}}}^{m+n};\,{{\mathbb {R}}})\) such that, for every \(f\in {{\mathcal {S}}}_\nu \), the map \(j^k_sf\) in (107) is transversal to W at every point \((x, y_1,\ldots ,y_s, P_1,\ldots , P_s )\in W\) such that \((x, y_1,\ldots ,y_s)\in V_\nu '\).

3. Repeating the same argument for every \(\nu \ge 1\), we obtain a sequence of residual subsets \({{\mathcal {S}}}_\nu \). The intersection \({{\mathcal {S}}}:=\bigcap _{\nu \ge 1}{{\mathcal {S}}}_\nu \) is still residual in \({{\mathcal {C}}}^\infty ({{\mathbb {R}}}^{m+n};\,{{\mathbb {R}}})\). By construction, for every \(f\in {{\mathcal {S}}}\) the map \(j^k_sf\) is transversal to W. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bressan, A., Jiang, Y. On the Generic Structure and Stability of Stackelberg Equilibria. J Optim Theory Appl 183, 840–880 (2019). https://doi.org/10.1007/s10957-019-01574-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-019-01574-z

Keywords

Mathematics Subject Classification

Navigation