Skip to main content
Log in

Subgame Perfect Nash Equilibrium: A Learning Approach via Costs to Move

  • Published:
Dynamic Games and Applications Aims and scope Submit manuscript

Abstract

In one-leader one-follower two-stage games, also called Stackelberg games, multiplicity of subgame perfect Nash equilibria (henceforth SPNEs) arises when the best reply correspondence of the follower is not a single-valued map. This paper concerns a new method to approach SPNEs which makes use of a sequence of SPNEs of perturbed games where the best reply correspondence of the follower is single-valued. The sequence is generated by a learning method where the payoff functions of both players are modified subtracting a term that represents a physical and behavioral cost to move and which relies on the proximal point methods linked to the Moreau–Yosida regularization. Existence results of SPNEs approached via this method are provided under mild assumptions on the data, together with numerical examples and connections with other methods to construct SPNEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Attouch H (1984) Variational convergence for functions and operators. Pitman Advanced Publishing Program, Boston

    MATH  Google Scholar 

  2. Attouch H, Soubeyran A (2006) Inertia and reactivity in decision making as cognitive variational inequalities. J Convex Anal 13:207

    MathSciNet  MATH  Google Scholar 

  3. Attouch H, Redont P, Soubeyran A (2007) A new class of alternating proximal minimization algorithms with costs-to-move. SIAM J Optim 18:1061–1081. https://doi.org/10.1137/060657248

    Article  MathSciNet  MATH  Google Scholar 

  4. Başar T, Olsder G (1999) Dynamic noncooperative game theory. SIAM, University City

    MATH  Google Scholar 

  5. Bauschke H, Combettes P (2011) Convex analysis and monotone operator theory in Hilbert spaces. Springer, Berlin

    Book  MATH  Google Scholar 

  6. Bich P (2016) Prudent equilibria and strategic uncertainty in discontinuous games. https://halshs.archives-ouvertes.fr/halshs-01337293/file/prudent-equilibria-preprint-24-juin.pdf. Accessed 24 June 2016 (preprint)

  7. Bonnel H, Morgan J (2012) Semivectorial bilevel convex optimal control problems: existence results. SIAM J Control Optim 50:3224–3241. https://doi.org/10.1137/100795450

    Article  MathSciNet  MATH  Google Scholar 

  8. Breton M, Alj A, Haurie A (1988) Sequential Stackelberg equilibria in two-person games. J Optim Theory Appl 59:71–97. https://doi.org/10.1007/BF00939867

    Article  MathSciNet  MATH  Google Scholar 

  9. Caruso F, Ceparano M, Morgan J (2018) Uniqueness of Nash equilibrium in continuous two-player weighted potential games. J Math Anal Appl 459:1208–1221. https://doi.org/10.1016/j.jmaa.2017.11.031

    Article  MathSciNet  MATH  Google Scholar 

  10. Ceparano M, Quartieri F (2017) Nash equilibrium uniqueness in nice games with isotone best replies. J Math Econ 70:154–165. https://doi.org/10.1016/j.jmateco.2017.02.011

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen C, Cruz J (1972) Stackelberg solution for two-person games with biased information patterns. IEEE Trans Autom Control 17:791–798. https://doi.org/10.1109/TAC.1972.1100179

    Article  MATH  Google Scholar 

  12. Colson B, Marcotte P, Savard G (2007) An overview of bilevel optimization. Ann Oper Res 153:235–256. https://doi.org/10.1007/s10479-007-0176-2

    Article  MathSciNet  MATH  Google Scholar 

  13. Dal Maso G (1993) An introduction to \(\Gamma \)-convergence. Birkhauser, Basel

    Book  MATH  Google Scholar 

  14. De Marco G, Morgan J (2008) Slightly altruistic equilibria. J Optim Theory and Appl 137:347–362. https://doi.org/10.1007/s10957-008-9353-y

    Article  MathSciNet  MATH  Google Scholar 

  15. Dempe S (2002) Foundations of bilevel programming. Springer, New York

    MATH  Google Scholar 

  16. Dempe S, Mordukhovich B, Zemkoho A (2014) Necessary optimality conditions in pessimistic bilevel programming. Optimization 63(4):505–533. https://doi.org/10.1080/02331934.2012.696641

    Article  MathSciNet  MATH  Google Scholar 

  17. Flåm S, Antipin A (1996) Equilibrium programming using proximal-like algorithms. Math Program 78:29–41. https://doi.org/10.1007/BF02614504

    Article  MathSciNet  Google Scholar 

  18. Flåm S, Greco G (1992) Non-cooperative games; methods of subgradient projection and proximal point. In: Oettli W, Pallaschke D (eds) Advances in optimization: proceedings of the 6th French–German colloquium on optimization held at Lambrecht, FRG, June 2–8, 1991. Springer, Berlin, pp 406–419

  19. Harsanyi J (1973) Oddness of the number of equilibrium points: a new proof. Int J Game Theory 2:235–250

    Article  MathSciNet  MATH  Google Scholar 

  20. Haurie A, Krawczyk J, Zaccour G (2012) Games and dynamic games. World Scientific Publishing Company, Singapore

    Book  MATH  Google Scholar 

  21. Kojima M, Okada A, Shindoh S (1985) Strongly stable equilibrium points of n-person noncooperative games. Math Oper Res 10:650–663

    Article  MathSciNet  MATH  Google Scholar 

  22. Leitmann G (1978) On generalized Stackelberg strategies. J Optim Theory Appl 26:637–643. https://doi.org/10.1007/BF00933155

    Article  MathSciNet  MATH  Google Scholar 

  23. Lignola M, Morgan J (1995) Topological existence and stability for Stackelberg problems. J Optim Theory Appl 84:145–169. https://doi.org/10.1007/BF02191740

    Article  MathSciNet  MATH  Google Scholar 

  24. Lignola M, Morgan J (1997) Stability of regularized bilevel programming problems. J Optim Theory Appl 93:575–596. https://doi.org/10.1023/A:1022695113803

    Article  MathSciNet  MATH  Google Scholar 

  25. Lignola M, Morgan J (2017) Inner regularizations and viscosity solutions for pessimistic bilevel optimization problems. J Optim Theory Appl 173:183–202. https://doi.org/10.1007/s10957-017-1085-4

    Article  MathSciNet  MATH  Google Scholar 

  26. Loridan P, Morgan J (1996) Weak via strong Stackelberg problem: new results. J Global Optim 8:263–287. https://doi.org/10.1007/BF00121269

    Article  MathSciNet  MATH  Google Scholar 

  27. Martinet B (1970) Brève communication régularisation d’inéquations variationnelles par approximations successives. Modélisation Mathématique et Analyse Numérique (ESAIM Math Model Numer Anal) 4:154–158

    MATH  Google Scholar 

  28. Maschler M, Solan E, Zamir S (2013) Game theory. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511794216

    Book  MATH  Google Scholar 

  29. Moreau J (1965) Proximité et dualité dans un espace hilbertien. Bulletin de la Société mathématique de France 93:273–299

    Article  MathSciNet  MATH  Google Scholar 

  30. Morgan J (1989) Constrained well-posed two-level optimization problems. In: Clarke F, Dem’yanov V, Giannessi F (eds) Nonsmooth optimization and related topics. Springer, Boston, pp 307–325

    Chapter  Google Scholar 

  31. Morgan J, Patrone F (2006) Stackelberg problems: subgame perfect equilibria via Tikhonov regularization. In: Haurie A, Muto S, Petrosjan L, Raghavan T (eds) Advances in dynamic games: applications to economics, management science, engineering, and environmental management. Birkhäuser Boston, Boston, pp 209–221

    Chapter  Google Scholar 

  32. Moudafi A (1999) Proximal point algorithm extended to equilibrium problems. J Nat Geom 15:91–100

    MathSciNet  MATH  Google Scholar 

  33. Myerson R (1978) Refinements of Nash equilibrium concept. Int J Game Theory 7:73–80

    Article  MathSciNet  MATH  Google Scholar 

  34. Okada A (1981) On stability of perfect equilibrium points. Int J Game Theory 10:67–73

    Article  MathSciNet  MATH  Google Scholar 

  35. Parikh N, Boyd S (2014) Proximal algorithms. Found Trends Optim 1:127–239. https://doi.org/10.1561/2400000003

    Article  Google Scholar 

  36. Rockafellar R (1976) Monotone operators and the proximal point algorithm. SIAM J Control Optim 14:877–898. https://doi.org/10.1137/0314056

    Article  MathSciNet  MATH  Google Scholar 

  37. Rosen J (1965) Existence and uniqueness of equilibrium points for concave \(n\)-person games. Econometrica 33:520–534

    Article  MathSciNet  MATH  Google Scholar 

  38. Selten R (1965) Spieltheoretische behandlung eines oligopolmodells mit nachfrageträgheit. Zeitschrift für die gesamte Staatswissenschaft 301–324, 667–689

  39. Selten R (1975) Reexamination of the perfectness concept for equilibrium points in extensive games. Int J Game Theory 4:25–55

    Article  MathSciNet  MATH  Google Scholar 

  40. Simaan M, Cruz JB (1973) On the Stackelberg strategy in nonzero-sum games. J Optim Theory Appl 11:533–555. https://doi.org/10.1007/BF00935665

    Article  MathSciNet  MATH  Google Scholar 

  41. Tikhonov A (1963) Solution of incorrectly formulated problems and the regularization method. Soviet Math Dokl 4:1035–1038

    MATH  Google Scholar 

  42. Vicente L, Calamai P (1994) Bilevel and multilevel programming: a bibliography review. J Glob Optim 5:291–306. https://doi.org/10.1007/BF01096458

    Article  MathSciNet  MATH  Google Scholar 

  43. von Stackelberg H (1952) The theory of the market economy. Oxford University Press, Oxford

    Google Scholar 

  44. Wen-Tsun W, Jia-He J (1962) Essential equilibrium points of n-person non-cooperative games. Sci Sin 11:1307–1322

    MathSciNet  MATH  Google Scholar 

  45. Wiesemann W, Tsoukalas A, Kleniati PM, Rustem B (2013) Pessimistic bilevel optimization. SIAM J Optim 23:353–380. https://doi.org/10.1137/120864015

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to strongly thank two anonymous referees for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline Morgan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caruso, F., Ceparano, M.C. & Morgan, J. Subgame Perfect Nash Equilibrium: A Learning Approach via Costs to Move. Dyn Games Appl 9, 416–432 (2019). https://doi.org/10.1007/s13235-018-0277-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13235-018-0277-3

Keywords

Navigation