Skip to main content
Log in

Bang–Bang Growth Rate Optimization in a Coupled McKendrick Model

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this work, we model the time and age evolution of a partially clonal population, i.e., able to reproduce sexually and asexually, in an environment with unlimited resources. The population is divided in two subpopulations, sexual and asexual, whose densities follow a coupled system of McKendrick–Von Foerster equations of evolution. The transition from one subpopulation to another is driven by transition probabilities for newborns to be sexual (resp. asexual) when their parent(s) is(are) in the asexual (sexual) subpopulation. We study the optimization of the growth rate of the whole population, with respect to these transition probabilities. We prove, using a result of the variation of the first eigenvalue (Malthusian growth rate) for this problem, that the maximal eigenvalue is reached when the probabilities are exactly (in time) equal to zero or one. Moreover, depending on birth and death rates of both subpopulations (asexual and sexual), we show that the maximal growth rate is reached when the population newborns switch (completely) from sexual to asexual and then from asexual to sexual (periodically in time) or when a subpopulation disappears.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. For aphids around 7 [7].

  2. For the survival (and more precisely the growth) of the asexual population during Spring to Autumn.

References

  1. Williams, G.C.: Sex and Evolution. Princeton University Press, Oxford (1975)

    Google Scholar 

  2. Goodwillie, C., Kalisz, S., Eckert, C.G.: The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Ann. Rev. Ecol. Evolut. Syst. 36, 47–79 (2005)

    Article  Google Scholar 

  3. Le Trionnaire, G., Hardie, J., Jaubert-Possamai, S., Simon, J.C., Tagu, D.: Shifting from clonal to sexual reproduction in aphids: physiological and developmental aspects. Biol. Cell 100(8), 441–51 (2008)

    Article  Google Scholar 

  4. Rispe, C., Pierre, J.-S., Simon, J.C., Gouyon, P.H.: Models of sexual and asexual coexistence in aphids based on constraints. J. Evolut. Biol. 11(11), 685–701 (2002)

    Google Scholar 

  5. Halkett, F., Harrington, R., Hullé, M., Kindlmann, P., Menu, F., Rispe, C., Plantegenest, M.: Dynamics of production of sexual forms in aphids: theoretical and experimental evidence for adaptive “Coin-Flipping” plasticity. Am. Nat. 163(6), E112–E125 (2004)

    Article  Google Scholar 

  6. Dagg, J.: Strategies of sexual reproduction in aphids, Strategies of Sexual Reproduction in Aphids. PhD thesis, University of Göttingen, Germany (2002)

  7. Sanchez-Palencia, E., Lherminier, P., Francoise, J.P.: A mathematical model for alternation of polygamy and parthenogenesis: stability versus efficiency and analogy with parasitism. Acta Biotheor. 64(4), 537–552 (2016)

    Article  Google Scholar 

  8. Michel, P., Mischler, S., Perthame, B.: General relative entropy inequality: an illustration on growth models. J. Math. Pures Appl. 84(9), 1235–1260 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Perthame, B.: Transport Equations in Biology. Birkhäuser, Basel (2007)

    Book  MATH  Google Scholar 

  10. Michel, P.: Fitness optimization in a cell division model. Comptes Rendus Math. 341(12), 731–736 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Michel, P.: Optimal proliferation rate in a cell division model. Math. Model. Nat. Phenom. 1(2), 23–44 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Clairambault, J., Michel, P., Perthame, B.: Circadian rhythm and tumour growth. Comptes Rendus Math. 342(1), 17–22 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Clairambault, J., Michel, P., Perthame, B.: A mathematical model of the cell cycle and its circadian control. In: Deutsch, A., Brusch, L., Byrne, H., de Vries, G., Herzel, H. (eds.) Mathematical Modeling of Biological Systems, Volume I: Cellular Biophysics, Regulatory Networks, Development, Biomedicine, and Data Analysis, pp. 239–251. Birkhäuser, Boston (2007)

    Chapter  Google Scholar 

  14. Campillo, F., Champagnat, N., Fritsch, C.: On the variations of the principal eigenvalue with respect to a parameter in growth-fragmentation models. Commun. Math. Sci. 15(7), 1801–1819 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Olivier, A.: How does variability in cell aging and growth rates influence the Malthus parameter? Kinet. Relat. Models 10(02), 481–512 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fisher, R.A.: The Genetical Theory of Natural Selection. Clarendon, Oxford (1930)

    Book  MATH  Google Scholar 

  17. Edwards, A.W.F.: Natural selection and the sex ratio: Fisher’s sources. Am. Nat. 151(6), 564–569 (1998)

    Article  Google Scholar 

  18. Hamilton, W.D.: Extraordinary sex ratios. Science 156(3774), 477–488 (1967)

    Article  Google Scholar 

  19. Collier, R.H., Finch, S.: IPM case studies—Brassicas. In: van Emden, H., Harrington, R. (eds.) Aphids as Crop Pests. CABI Publishing, London (2007)

    Google Scholar 

  20. Metz, J.A.J., Diekmann, O. (eds.): The Dynamics of Physiologically Structured Populations. Springer, Berlin (1986)

    MATH  Google Scholar 

  21. Cushing, J.M.: Periodic McKendrick equations for age-structured population growth. Comput. Math. Appl. 12(4), 513–526 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Floquet, G.: Sur les équations différentielles linéaires à coefficients périodiques. Annales de l’École Normale Supérieure 12, 47–88 (1883)

    Article  MATH  Google Scholar 

  23. Sonneborn, L., Van Vleck, F.: The Bang–Bang principle for linear control systems. SIAM J. Control 2, 151–159 (1965)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Michel.

Additional information

Communicated by Alberto d’Onofrio.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michel, P. Bang–Bang Growth Rate Optimization in a Coupled McKendrick Model. J Optim Theory Appl 183, 332–351 (2019). https://doi.org/10.1007/s10957-019-01556-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-019-01556-1

Keywords

Mathematics Subject Classification

Navigation