Skip to main content

A Mathematical Model of the Cell Cycle and Its Circadian Control

  • Chapter
Mathematical Modeling of Biological Systems, Volume I

Summary

We address the following question: Can one sustain, on the basis of mathematicalmodels, that for cancer cells, the loss of control by circadian rhythm favours a faster populationgrowth? This question, which comes from the observation that tumour growth in mice isenhanced by experimental disruption of the circadian rhythm, may be tackled by mathematicalmodelling of the cell cycle. For this purpose we consider an age-structured population modelwith control of death (apoptosis)rates and phase transitions, and two eigenvalues: one for periodic control coefficients (via a variant of Floquet theory in infinite dimension)and one forconstant coefficients (taken as the time average of the periodic case). We show by a direct proofthat, surprisingly enough considering the above-mentioned observation, the periodic eigenvalue is always greater than the steady state eigenvalue when the sole apoptosis rate is concerned. We also show by numerical simulations when transition rates between the phases of the cell cycle are concerned, that, without further hypotheses, no natural hierarchy between the two eigenvalues exists. This at least shows that, if such models are to take into account the above-mentioned observation, control of death rates inside phases is not sufficient, and that transition rates between phases are a key target in proliferation control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arino, O.: A survey of structured cell population dynamics. Acta Biotheor., 43, 3–25 (1995).

    Article  Google Scholar 

  2. Basse, B., Baguley, B.C., Marshall, E.S., Joseph, W.R., van Brunt, B., Wake, G., Wall, D.J.N.: A mathematical model for analysis of the cell cycle in cell lines derived from human tumors. J. Math. Biol., 47, 295 –312 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  3. Bjarnason, G., Jordan, R.C.K., Sothern, R.B.: Circadian variations in the expression of cell-cycle proteins in human oral epithelium. Am. J. Pathol., 154, 613 –622 (1999).

    Google Scholar 

  4. Chiorino, G., Metz, J.A.J., Tomasoni, D., Ubezio, P. Desynchronization rate in cell populations: mathematical modeling and experimental data. J. Theor. Biol., 208, 185 –199 (2001).

    Article  Google Scholar 

  5. Clairambault, J., Laroche, B., Mischler, S., Perthame, B.: A mathematical model of the cell cycle and its control. INRIA research report # 4892 (2003).

    Google Scholar 

  6. Clairambault, J., Mischler, S., Perthame B.: Circadian rhythm and tumour growth. C. R. Acad. Sci. Paris, Ser. I, 342, 17 –22 (2006).

    Google Scholar 

  7. Cohen, J.E., Friedland, S., Kato, T., Kelly, F.P.: Eigenvalue inequalities for products of matrix exponentials. Lin. Alg. Appl., 45, 55 –95 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  8. Davis, S., Mirick, D.K., Stevens, R.G.: Night shift work, light at night, and risk of breast cancer. J. Natl Cancer Inst., 93, 1557 –1562 (2001).

    Article  Google Scholar 

  9. Filipski, E., King, V.M., Li, X.M., Granda, T. G., Mormont, M.C., Liu, X.H., Claustrat, B., Hastings, M.H., Lévi, F.: Host circadian clock as a control point in tumor progression. J. Natl. Cancer Inst., 94, 690 –697 (2002).

    Google Scholar 

  10. Filipski, E., Innominato, P.F., Wu, M.W., Li, X.M., Iacobelli, S., Xian, L.J., Lévi, F.: Effect of light and food schedules on liver and tumor molecular clocks in mice. J. Natl. Cancer Inst., 97, 507 –517 (2005).

    Article  Google Scholar 

  11. Fu, L., Pelicano, H., Liu, J., Huang, P., Lee, C.C.: The circadian gene Per2plays an important role in tumor suppression and DNA damage response in vivo. Cell, 111, 41 –50 (2002).

    Article  Google Scholar 

  12. Fu, L., Lee, C.C.: The circadian clock: pacemaker and tumor suppressor. Nature reviews/Cancer, 2003(3): 350–361.

    Article  Google Scholar 

  13. Goldbeter, A.: Biochemical Oscillations and Cellular Rhythms. Cambridge University Press (1996).

    MATH  Google Scholar 

  14. Lebowitz, J.L., Rubinow, S.I.: A theory for the age and generation time distribution of a microbial population. J. Math. Biol., 1, 17 –36 (1977).

    Article  MathSciNet  Google Scholar 

  15. Léevi, F. (ed.): Cancer chronotherapeutics. Special issue of Chronobiology International Vol. 19 (1) (2002).

    Google Scholar 

  16. Matsuo, T., Yamaguchi, S., Mitsui, S., Emi, A., Shimoda, F., Okamura, H.: Control mechanism of the circadian clock for timing of cell division in vivo. Science, 302, 255 –259 (2003).

    Article  Google Scholar 

  17. Metz, J.A.J., Diekmann, O.: The dynamics of physiologically structured populations. LN in Biomathematics 68, Springer-Verlag (1986).

    MATH  Google Scholar 

  18. Michel, P., Mischler, S., Perthame, B.: The entropy structure of models of structured population dynamics. General relative entropy inequality: an illustration on growth models. J. Math. Pures et Appl., 84, 1235 –1260 (2005).

    MATH  MathSciNet  Google Scholar 

  19. Mischler, S., Perthame, B., Ryzhik L.: Stability in a nonlinear population maturation model. M3AS, 12, 1751 –1772 (2002).

    MATH  MathSciNet  Google Scholar 

  20. Mormont, M.-C., Lévi, F.: Cancer chronotherapy: principles, applications and perspectives. Cancer, 97, 155 –169 (2003).

    Article  Google Scholar 

  21. Nagoshi, E., Saini, C., Bauer, C., Laroche, T., Naef, F., Schibler, U. Circadian gene expression in individual fibbroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell, 119, 693–705 (2004).

    Article  Google Scholar 

  22. Rotenberg, M.: Transport theory for growing cell populations. J. Theor. Biol., 103, 181 –199 (1983).

    Article  MathSciNet  Google Scholar 

  23. Schernhammer, E.S., Laden, F., Speizer, F.E., Willett, W.C., Hunter, D.J., Kawachi, I., Fuchs, C.S., Colditz, G.A.: Night-shift work and risk of colorectal cancer in the Nurses’ Health Study. J. Natl. Cancer Inst., 95, 825 –828 (2003).

    Article  Google Scholar 

  24. Schibler, U.: Liver regeneration clocks on. Science, 302, 234 –235 (2003).

    Article  Google Scholar 

  25. Wu M.W., Li X.M., Xian L.J., Lévi F.: Effects of meal timing on tumor progression in mice. Life Sciences, 75, 1181 –1193 (2004).

    Article  Google Scholar 

  26. You, S., Wood, P.A., Xiong, Y., Kobayashi, M., Du-Quiton, J., Hrushesky, W.J.M.: Daily coordination of cancer growth and circadian clock gene expression. Breast Canc. Res. Treat., 91, 47 –60 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 springer

About this chapter

Cite this chapter

Clairambault, J., Michel, P., Perthame, B. (2007). A Mathematical Model of the Cell Cycle and Its Circadian Control. In: Deutsch, A., Brusch, L., Byrne, H., Vries, G.d., Herzel, H. (eds) Mathematical Modeling of Biological Systems, Volume I. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4558-8_21

Download citation

Publish with us

Policies and ethics