Skip to main content
Log in

A Tensor Analogy of Yuan’s Theorem of the Alternative and Polynomial Optimization with Sign structure

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Yuan’s theorem of the alternative is an important theoretical tool in optimization, which provides a checkable certificate for the infeasibility of a strict inequality system involving two homogeneous quadratic functions. In this paper, we provide a tractable extension of Yuan’s theorem of the alternative to the symmetric tensor setting. As an application, we establish that the optimal value of a class of nonconvex polynomial optimization problems with suitable sign structure (or more explicitly, with essentially nonpositive coefficients) can be computed by a related convex conic programming problem, and the optimal solution of these nonconvex polynomial optimization problems can be recovered from the corresponding solution of the convex conic programming problem. Moreover, we obtain that this class of nonconvex polynomial optimization problems enjoy exact sum-of-squares relaxation, and so, can be solved via a single semidefinite programming problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yuan, Y.X.: On a subproblem of trust region algorithms for constrained optimization. Math. Prog. 47, 53–63 (1990)

    Article  MATH  Google Scholar 

  2. Yan, Z.Z., Guo, J.H.: Some equivalent results with Yakubovich’s S-lemma. SIAM J. Control Optim. 48(7), 4474–4480 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Jeyakumar, V., Huy, H.Q., Li, G.: Necessary and sufficient conditions for S-lemma and nonconvex quadratic optimization. Optim. Eng. 10, 491–503 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Pólik, I., Terlaky, T.: A survey of the S-Lemma. SIAM Rev. 49, 371–418 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Sturm, J.F., Zhang, S.Z.: On cones of non-negative quadratic functions. Math. Oper. Res. 28, 246–267 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Yakubovich, V.A.: S-Procedure in nonlinear control theory. Vestnik Leningrad. Univ. 1, 62–77 (1971)

    Google Scholar 

  7. Chen, X., Yuan, Y.: A note on quadratic forms. Math. Program. 86, 187–197 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Polyak, B.T.: Convexity of quadratic transformation and its use in control and optimization. J. Optim. Theory Appl. 99, 563–583 (1998)

    Article  MathSciNet  Google Scholar 

  9. Crouzeix, J.P., Martinez-Legaz, J.E., Seeger, A.: An theorem of the alternative for quadratic forms and extensions. Linear Algebr. Appl. 215, 121–134 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Martínez-Legaz, J.E., Seeger, A.: Yuan’s theorem of the alternative and the maximization of the minimum eigenvalue function. J. Optim. Theory Appl. 82(1), 159–167 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jeyakumar, V., Lee, G.M., Li, G.: Alternative theorems for quadratic inequality systems and global quadratic optimization. SIAM J. Optim. 20(2), 983–1001 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lim, L.H.: Singular values and eigenvalues of tensors, A variational approach, In: Proceedings of the 1st IEEE International workshop on computational advances of multi-tensor adaptive processing, pp. 129–132, (2005)

  13. Qi, L.: Eigenvalues of a real symmetric tensor. J. Symb. Comput. 40, 1302–1324 (2005)

    Article  MATH  Google Scholar 

  14. Bomze, I.M., Ling, C., Qi, L., Zhang, X.: Standard bi-quadratic optimization problems and unconstrained polynomial reformulations. J. Glob. Optim. 52, 663–687 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. He, S., Li, Z., Zhang, S.: Approximation algorithms for homogeneous polynomial optimization with quadratic constraints. Math. Program. 125, 325–383 (2010)

    Article  MathSciNet  Google Scholar 

  16. Zhang, X., Qi, L., Ye, Y.: The cubic spherical optimization problems. Math. Comput. 81, 1513–1525 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ling, C., Nie, J., Qi, L., Ye, Y.: Bi-quadratic optimization over unit spheres and semidefinite programming relaxations. SIAM J. Optim. 20, 1286–1310 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. So, A.M.-C.: Deterministic approximation algorithms for sphere constrained homogeneous polynomial optimization problems. Math. Program. 129, 357–382 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, G., Mordukhovich, B.S., Pham, T.S.: New fractional error bounds for polynomial systems with applications to Hölderian stability in optimization and spectral theory of tensors, to appear in Math. Program. doi:10.1007/s10107-014-0806-9

  20. Qi, L., Xu, Y., Yuan, Y., Zhang, X.: A cone constrained convex program: structure and algorithms. J. Oper. Res. Soc. China 1, 37–53 (2013)

    Article  MATH  Google Scholar 

  21. Qi L., Ye, Y.: Space tensor conic programming. Comp. Optim. Appl. 59, 307–319 (2014)

  22. Cooper, J., Dutle, A.: Spectral of hypergraphs. Linear Algebr. Appl. 436, 3268–3292 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hu, S., Qi, L.: Algebraic connectivity of an even uniform hypergraph. J. Comb. Optim. 24, 564–579 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, G., Qi, L., Yu, G.: The Z-eigenvalues of a symmetric tensor and its application to spectral hypergraph theory. Num. Linear Algebr. Appl. 20(6), 1001–1029 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Qi, L.: H\(^+\)-eigenvalues of Laplacian and signless Laplacian tensors. Commun. Math. Sci. 12, 1045–1064 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ng, M., Qi, L., Zhou, G.: Finding the largest eigenvalue of a non-negative tensor. SIAM J. Matrix Anal. Appl. 31, 1090–1099 (2009)

    Article  MathSciNet  Google Scholar 

  27. Lathauwer, L. De, Moor, B.: From matrix to tensor: Multilinear algebra and signal processing. In: J. McWhirter, Editor, Mathematics in Signal Processing IV, Selected papers presented at 4th IMA International Conference on Mathematics in Signal Processing, Oxford University Press, Oxford, United Kingdom, pp. 1–15, (1998)

  28. Qi, L., Teo, K.L.: Multivariate polynomial minimization and its application in signal processing. J. Global Optim. 46, 419–433 (2003)

    Article  MathSciNet  Google Scholar 

  29. Qi, L., Yu, G., Wu, E.X.: Higher order positive semi-definite diffusion tensor imaging. SIAM J. Imaging Sci. 3, 416–433 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Chang, K.C., Pearson, K., Zhang, T.: Primitivity, the convergence of the NZQ method, and the largest eigenvalue for non-negative tensors. SIAM J. Matrix Anal. Appl. 32, 806–819 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hu, S., Li, G., Qi, L., Song, Y.: Finding the maximum eigenvalue of essentially non-negative symmetric tensors via sum of squares programming. J. Optim. Theory Appl. 158(3), 713–738 (2013)

    MathSciNet  Google Scholar 

  32. Kofidis, E., Regalia, Ph: On the best rank-1 approximation of higher-order symmetric tensors. SIAM J. Matrix Anal. Appl. 23, 863–884 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Li, G., Qi, L., Yu, G.: Semismoothness of the maximum eigenvalue function of a symmetric tensor and its application. Linear Algebr. Appl. 438, 813–833 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu, Y., Zhou, G., Ibrahim, N.F.: An always convergent algorithm for the largest eigenvalue of an irreducible non-negative tensor. J. Comput. Appl. Math. 235(1), 286–292 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang, L., Qi, L., Luo, Z., Xu, Y.: The dominant eigenvalue of an essentially non-negative tensor. Num. Linear Algebr. Appl. 20(6), 929–941 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yang, Y.N., Yang, Q.Z.: Further results for Perron–Frobenius theorem for non-negative tensors. SIAM J. Matrix Anal. Appl. 31(5), 2517–2530 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lasserre, J.B.: Moments. Positive Polynomials and their Applications. Imperial College Press, London (2009)

    Book  Google Scholar 

  39. Laurent, M.: Sums of squares, moment matrices and optimization over polynomials. Emerging Applications of Algebraic Geometry, Vol. 149 of IMA Volumes in Mathematics and its Applications, M. Putinar and S. Sullivant (eds.), Springer, Berlin pp. 157–270, (2009)

  40. Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems. Math. Program. Ser. B 96(2), 293–320 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  41. Hilbert, D.: Über die Darstellung definiter Formen als Summe von Formenquadraten. Math. Ann. 32, 342–350 (1888)

    Article  MathSciNet  MATH  Google Scholar 

  42. Reznick, B.: Some concrete aspects of Hilbert’s 17th Problem. Real algebraic geometry and ordered structures (Baton Rouge, LA, 1996), Contemporary mathematics 253, American Mathematical Society, Providence, pp. 251–272, (2000)

  43. Reznick, B.: Sums of Even Powers of Real Linear Forms, Memoirs of the American Mathematical Society, Number 463, (1992)

  44. Fidalgo, C., Kovacec, A.: Positive semidefinite diagonal minus tail forms are sums of squares. Math. Z. 269, 629–645 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zalinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002)

    Book  MATH  Google Scholar 

  46. Friedgut, E.: Hypergraphs, entropy, and inequalities. Am. Math. Mon. 111, 749–760 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11, 796–817 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  48. Há, H.V., Pham, T.S.: Representations of positive polynomials and optimization on noncompact semialgebraic sets. SIAM J. Optim. 20(6), 3082–3103 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Nie, J., Demmel, J., Sturmfels, B.: Minimizing polynomials via sum of squares over the gradient ideal. Math. Program. Ser. A 106(3), 587–606 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  50. Schweighofer, M.: Global optimization of polynomials using gradient tentacles and sums of squares. SIAM J. Optim. 17(3), 920–942 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  51. Ghasemi, M., Lasserre, J. B., Marshall, M.: Lower Bounds on the Global Minimum of a Polynomial, arXiv:1209.3049.

  52. Ghasemi, M., Marshall, M.: Lower bounds for polynomials using geometric programming. SIAM J. Optim. 22, 460–473 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  53. Löfberg, J.: Pre- and post-processing sum-of-squares programs in practice. IEEE Trans. Autom. Control 54, 1007–1011 (2009)

    Article  Google Scholar 

  54. Löfberg, J.: YALMIP: A Toolbox for Modeling and Optimization in MATLAB. In: Proceedings of the CACSD Conference, Taipei, (2004)

  55. Papy, J.M., De Lathauwer, L., Van Huffel, S.: Exponential data fitting using multilinear algebra: The single-channel and multi-channel case. Num. Linear Algebr. Appl. 12, 809–826 (2005)

    Article  MATH  Google Scholar 

  56. Ding, W., Qi L., Wei, Y.: Fast Hankel Tensor-vector Products and Application to Exponential Data Fitting, (2014). arXiv: 1401.6238

  57. Chen Z., Qi, L.: Circulant Tensors with Applications to Spectral Hypergraph Theory and Stochastic Process, (2014). arXiv:1312.2752

Download references

Acknowledgments

The authors would like to express their sincere thanks to the referees for their constructive comments and valuable suggestions, which have contributed to the revision of this paper. Moreover, the second author would like to thank Prof. J. B. Lasserre and Prof. T. S. Pham for pointing out the related references [50, 51] during their visit in UNSW. Research was partially supported by the Australian Research Council Future Fellowship (FT130100038) and the Hong Kong Research Grant Council (Grant Nos. PolyU 502510, 502111, 501212, and 501913), and the National Natural Science Foundation of China (Grant No. 11401428 and 11101303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyin Li.

Appendix

Appendix

Proof of Proposition 2.1

Proof

As any SOS polynomial takes non-negative value, \(\mathrm{SOS}_{m,n} \cap E_{m,n} \subseteq \mathrm{PSD}_{m,n} \cap E_{m,n}\) always holds. We only need to show the converse inclusion. To establish this, let \(\mathcal {A} \in \mathrm{PSD}_{m,n} \cap E_{m,n}\), and let us consider the associated homogeneous polynomial:

$$\begin{aligned} f(x)=\langle \mathcal {A}, x^{\otimes m}\rangle =\sum _{i_1,\ldots ,i_m=1}^{n} \mathcal {A}_{i_1\cdots i_m}x_{i_1}\cdots x_{i_m}. \end{aligned}$$

Then, \(f\) is a polynomial which takes non-negative value. Note that

$$\begin{aligned} f(x)=\sum _{i_1,\ldots ,i_m=1}^{n} \mathcal {A}_{i_1\cdots i_m}x_{i_1}\cdots x_{i_m}=\sum _{i=1}^n(\mathcal {A}_{ii\cdots i})x_i^{m}+\sum _{(i_1,\ldots ,i_m) \notin I}(\mathcal {A}_{i_1\cdots i_m})x_{i_1} \cdots x_{i_m}, \end{aligned}$$

where \(I:=\{(i,i,\ldots ,i) \in \mathbb {N}^m: 1 \le i \le n\}.\) As \(\mathcal {A}\) is essentially nonpositive, \(\mathcal {A}_{i_1i_2\cdots i_m} \le 0\) for all \((i_1,\ldots ,i_m) \notin I\). Now, let \(f(x)=\sum _{i=1}^n f_{m,i} x_i^{m}+\sum _{\alpha \in \Omega _f}f_{\alpha }x^{\alpha }\). Then, \(f_{m,i}=\mathcal {A}_{ii\cdots i}\) and \(f_{\alpha } < 0\) for all \(\alpha \in \Omega _f\) where \(\Omega _f=\{\alpha =(\alpha _1,\ldots ,\alpha _n) \in (\mathbb {N}\cup \{0\})^n: f_{\alpha } \ne 0 \text { and } \alpha \ne m e_i, \ i=1,\ldots ,n\},\) and \(e_i\) is the vector where its \(i\)th component is one and all the other components are zero. Recall that \(\Delta _f = \{\alpha =(\alpha _1,\ldots ,\alpha _n) \in \Omega _f: f_{\alpha } < 0 \text { or } \alpha \notin (2\mathbb {N}\cup \{0\})^n\}.\) Note that \(f_{\alpha }<0\) for all \(\alpha \in \Omega _f\), and so, \(\Delta _f=\Omega _f\). It follows that

$$\begin{aligned} \hat{f}(x)&:= \sum _{i=1}^n f_{m,i} x_i^{m}-\sum _{\alpha \in \Delta _f}|f_{\alpha }|x^{\alpha }\\&= \sum _{i=1}^n f_{m,i} x_i^{m}+\sum _{\alpha \in \Delta _f}f_{\alpha }x^{\alpha } \\&= \sum _{i=1}^n f_{m,i} x_i^{m}+\sum _{\alpha \in \Omega _f}f_{\alpha }x^{\alpha } = f(x). \end{aligned}$$

So, \(\hat{f}\) is also a polynomial which takes non-negative value. Thus, the conclusion follows by Lemma 2.1. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, S., Li, G. & Qi, L. A Tensor Analogy of Yuan’s Theorem of the Alternative and Polynomial Optimization with Sign structure . J Optim Theory Appl 168, 446–474 (2016). https://doi.org/10.1007/s10957-014-0652-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-014-0652-1

Keywords

Mathematics Subject Classification

Navigation