Skip to main content

Advertisement

Log in

Theory-Based Learning Design with Immersive Virtual Reality in Science Education: a Systematic Review

  • Published:
Journal of Science Education and Technology Aims and scope Submit manuscript

Abstract

Multiple reviews point out that immersive virtual reality (IVR) educational studies often lack the consideration of learning theories in research design and IVR application development to promote students’ learning. In response to the lack of theoretical foundations in educational research of IVR applications, an increased number of scholarly studies have been published in recent years to incorporate learning theories into the design of VR applications, research, and lesson design of IVR-based lessons, particularly in the field of science education. Through synthesizing IVR educational research articles that used learning theories, this review aims to study how to best design IVR instructions using learning theories as foundations. Supported by various learning design theories, the synthesis of the reviewed studies (n = 29) reveals that students’ learning outcomes could be enhanced by (1) providing students with high level of control over their IVR learning experiences, (2) minimizing cognitive loads imposed by IVR, (3) integrating learners’ characteristics into IVR learning application design, and (4) adding reflective tasks before or after IVR applications. Details of these theoretically informed lesson design were also explored. Based on these findings, we propose six design principles to help facilitate the transition to IVR lessons and improve IVR learning application design and lesson design. This set of design principles will provide theoretically informed pedagogical suggestions for future educators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Please contact the corresponding author for details of data.

References

  • Abrahamson, D., & Lindgren, R. (2014). Embodiment and embodied design. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (2nd ed., pp. 358–376). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781139519526.022

  • Ai-Lim Lee, E., Wong, K. W., & Fung, C. C. (2010). How does desktop virtual reality enhance learning outcomes? A structural equation modeling approach. Computers & Education, 55(4), 1424–1442. https://doi.org/10.1016/j.compedu.2010.06.006

    Article  Google Scholar 

  • Annetta, L. A. (2010). The “I’s” have it: A framework for serious educational game design. Review of General Psychology, 14(2), 105. https://doi.org/10.1037/a0018985

    Article  Google Scholar 

  • Antonenko, P. D., Dawson, K., & Sahay, S. (2017). A framework for aligning needs, abilities and affordances to inform design and practice of educational technologies. British Journal of Educational Technology, 48(4), 916–927. https://doi.org/10.1111/bjet.12466

    Article  Google Scholar 

  • Araiza-Alba, P., Keane, T., & Kaufman, J. (2022). Are we ready for virtual reality in K–12 classrooms? Technology, Pedagogy and Education, 31(4), 471–491. https://doi.org/10.1080/1475939X.2022.2033307

    Article  Google Scholar 

  • Ausburn, L., & Ausburn, F. B. (2008). Effects of desktop virtual reality on learner performance and confidence in environment mastery: Opening a line of inquiry. Journal of Industrial Teacher Education., 45, 54–87.

    Google Scholar 

  • Azevedo, R., & Witherspoon, A. M. (2009). Self-regulated learning with hypermedia. In D. J. Hacker, J. Dunlosky, & A. C. Graesser (Eds.), Handbook of metacognition in education (pp. 319–339). Mahwah, NJ: Lawrence Erlbaum/Taylor & Francis.

  • Baceviciute, S., Lucas, G., Terkildsen, T., & Makransky, G. (2021b). Investigating the redundancy principle in immersive virtual reality environments: An eye-tracking and EEG study. Journal of Computer Assisted Learning, 38(1), 120–136. https://doi.org/10.1111/jcal.12595

    Article  Google Scholar 

  • Baceviciute, S., Terkildsen, T., & Makransky, G. (2021a). Remediating learning from non-immersive to immersive media: Using EEG to investigate the effects of environmental embeddedness on reading in virtual reality. Computers & Education, 164, 104122. https://doi.org/10.1016/j.compedu.2020.104122

  • Barnidge, M., Sherrill, L. A., Kim, B., Cooks, E., Deavours, D., Viehouser, M., Broussard, R., & Zhang, J. (2022). The effects of virtual reality news on learning about climate change. Mass Communication and Society, 25(1), 1–24. https://doi.org/10.1080/15205436.2021.1925300

    Article  Google Scholar 

  • Biocca, F., & Delaney, B. (1995). Immersive virtual reality technology. Communication in the age of virtual reality (pp. 57–124). Hillsdale, NJ, US: Lawrence Erlbaum Associates Inc.

    Google Scholar 

  • Bower, M. (2008). Affordance analysis–matching learning tasks with learning technologies. Educational Media International, 45(1), 3–15.

    Article  Google Scholar 

  • Brannen, J. (2017). Mixing methods: Qualitative and quantitative research. Taylor and Francis.

  • Brinson, J. R. (2017). A further characterization of empirical research related to learning outcome achievement in remote and virtual science Labs. Journal of Science Education and Technology, 26(5), 546–560. https://doi.org/10.1007/s10956-017-9699-8

    Article  Google Scholar 

  • Brown, C. E., Alrmuny, D., Williams, M. K., Whaley, B., & Hyslop, R. M. (2021a). Visualizing molecular structures and shapes: A comparison of virtual reality, computer simulation, and traditional modeling. Chemistry Teacher International, 3(1), 69–80. https://doi.org/10.1515/cti-2019-0009

    Article  Google Scholar 

  • Brown, B. A., Ribay, K., Pérez, G., Boda, P. A., & Wilsey, M. (2020). A virtual bridge to cultural access: Culturally relevant virtual reality and its impact on science students. International Journal of Technology in Education and Science, 4(2), 86–97.

    Article  Google Scholar 

  • Brown, B., Pérez, G., Ribay, K., Boda, P. A., & Wilsey, M. (2021b). Teaching culturally relevant science in virtual reality: “When a problem comes, you can solve it with science.” Journal of Science Teacher Education, 32(1), 7–38. https://doi.org/10.1080/1046560X.2020.1778248

    Article  Google Scholar 

  • Brown, B., Boda, P., Ribay, K., Wilsey, M., & Perez, G. (2021c). A technological bridge to equity: How VR designed through culturally relevant principles impact students appreciation of science. Learning, Media and Technology, 46(4), 564–584. https://doi.org/10.1080/17439884.2021.1948427

    Article  Google Scholar 

  • Budi, A. S., Sumardani, D., Muliyati, D., Bakri, F., Chiu, P.-S., Mutoharoh, M., & Siahaan, M. (2021). Virtual reality technology in physics learning: Possibility, trend, and tools. Jurnal Penelitian & Pengembangan Pendidikan Fisika, 7(1), 23–34. https://doi.org/10.21009/1.07103

  • Cai, J.-Y., Wang, R.-F., Wang, C.-Y., Ye, X.-D., & Lee, X.-Z. (2021). The influence of learners’ cognitive style and testing environment supported by virtual reality on English-speaking learning achievement. Sustainability, 13, 11751. https://doi.org/10.3390/su132111751

    Article  Google Scholar 

  • Cheng, K.-H., & Tsai, C.-C. (2020). Students’ motivational beliefs and strategies, perceived immersion and attitudes towards science learning with immersive virtual reality: A partial least squares analysis. British Journal of Educational Technology, 51(6), 2140–2159. https://doi.org/10.1111/bjet.12956

    Article  Google Scholar 

  • Civelek, T., Ucar, E., Ustunel, H., & Aydin, M. K. (2014). Effects of a haptic augmented simulation on K-12 students’ achievement and their attitudes towards physics. EURASIA Journal of Mathematics, Science & Technology Education, 10(6), 565–574. https://doi.org/10.12973/eurasia.2014.1122a

  • Clark, A. (1997). Being there: Putting brain, body, and world together again. Cambridge: MIT Press.

    Google Scholar 

  • Clark, R. E. R. E. (1994). Media will never influence learning. Educational Technology Research and Development, 42(2), 21–29. https://doi.org/10.1007/BF02299088

    Article  Google Scholar 

  • Coban, M., Bolat, Y. I., & Goksu, I. (2022). The potential of immersive virtual reality to enhance learning: A meta-analysis. Educational Research Review, 36, 100452. https://doi.org/10.1016/j.edurev.2022.100452

  • Conole, G., Dyke, M., Oliver, M., & Seale, J. (2004). Mapping pedagogy and tools for effective learning design. Computers & Education, 43(1), 17–33. https://doi.org/10.1016/j.compedu.2003.12.018

    Article  Google Scholar 

  • Concannon, B. J., Esmail, S., & Roduta Roberts, M. (2019). Head-mounted display virtual reality in post-secondary education and skill training. Frontiers in Education, 4. Retrieved February 14, 2022, from https://www.frontiersin.org/article/10.3389/feduc.2019.00080

  • Dalgarno, B., & Lee, M. (2010). What are the learning affordances of 3-D virtual environments? British Journal of Educational Technology, 41, 10–32. https://doi.org/10.1111/j.1467-8535.2009.01038.x

    Article  Google Scholar 

  • Deci, E. L., & Ryan, R. M. (2012). Motivation, personality, and development within embedded social contexts: An overview of self-determination theory. In R. Ryan (Ed.), The Oxford handbook of human motivation (pp. 85–107). Oxford University Press.

    Chapter  Google Scholar 

  • Dincelli, E., & Yayla, A. (2022). Immersive virtual reality in the age of the Metaverse: A hybrid-narrative review based on the technology affordance perspective. The Journal of Strategic Information Systems, 31(2), 101717. https://doi.org/10.1016/j.jsis.2022.101717

  • Domagk, S., Schwartz, R. N., & Plass, J. L. (2010). Interactivity in multimedia learning: An integrated model. Computers in Human Behavior, 26(5), 1024–1033. https://doi.org/10.1016/j.chb.2010.03.003

    Article  Google Scholar 

  • Durukan, A., Artun, H., & Temur, A. (2020). Virtual reality in science education: A descriptive review. Journal of Science Learning, 3(3), 132–142. ERIC.

  • Edwards, B. I., Bielawski, K. S., Prada, R., & Cheok, A. D. (2019). Haptic virtual reality and immersive learning for enhanced organic chemistry instruction. Virtual Reality, 23(4), 363–373. https://doi.org/10.1007/s10055-018-0345-4

    Article  Google Scholar 

  • Fiorella, L., & Mayer, R. E. (2015). Learning as a generative activity: Eight learning strategies that promote understanding. Cambridge University Press. https://doi.org/10.1017/CBO9781107707085

    Book  Google Scholar 

  • Fiorella, L., & Mayer, R. E. (2016). Eight ways to promote generative learning. Educational Psychology Review, 28, 717–741.

    Article  Google Scholar 

  • Gibson, J. J. (1986). The ecological approach to visual perception. Taylor & Francis.

    Google Scholar 

  • Gonz´alez, C. (2010). What do university teachers think eLearning is good for in their teaching? Studies in Higher Education, 35(1), 61–78. https://doi.org/10.1080/03075070902874632

    Article  Google Scholar 

  • Hamilton, D., McKechnie, J., Edgerton, E., & Wilson, C. (2021). Immersive virtual reality as a pedagogical tool in education: A systematic literature review of quantitative learning outcomes and experimental design. Journal of Computers in Education, 8(1), 1–32. https://doi.org/10.1007/s40692-020-00169-2

    Article  Google Scholar 

  • Huang, K.-T., Ball, C., Francis, J., Ratan, R., Boumis, J., & Fordham, J. (2019). Augmented Versus Virtual Reality in Education: An exploratory study examining science knowledge retention when using augmented reality/virtual reality mobile applications. Cyberpsychology, Behavior, and Social Networking, 22(2), 105–110. https://doi.org/10.1089/cyber.2018.0150

    Article  Google Scholar 

  • Jia, C., & Hew, K. F. (2021). Toward a set of design principles for decoding training: A systematic review of studies of English as a foreign/second language listening education. Educational Research Review, 33, 100392. https://doi.org/10.1016/j.edurev.2021.100392

  • Johnson-Glenberg, M. C., & Megowan-Romanowicz, M. C. (2017). Embodied science and mixed reality: How gesture and motion capture affect physics education. Cognitive Research: Principles and Implications, 2(24), 24. https://doi.org/10.1186/s41235-017-0060-9

    Article  Google Scholar 

  • Johnson-Glenberg, M. C., Bartolomea, H., & Kalina, E. (2021). Platform is not destiny: Embodied learning effects comparing 2D desktop to 3D virtual reality STEM experiences. Journal of Computer Assisted Learning, 37(5), 1263–1284. https://doi.org/10.1111/jcal.12567

    Article  Google Scholar 

  • Johnson-Glenberg, M. C., Birchfield, D., Koziupa, T., & Tolentino, L. (2014). Collaborative embodied learning in mixed reality motion-capture envi- ronments: Two science studies. Journal of Educational Psychology, 106(1), 86–104. https://doi.org/10.1037/a0034008

    Article  Google Scholar 

  • Johnson-Glenberg, M. C., Birchfield, D., Megowan-Romanowicz, M. C., & Snow, E. L. (2015). If the gear fits, spin it! Embodied education and ingame assessments. International Journal of Gaming and Computer-Based Simulations, 7(7), 40–65. https://doi.org/10.4018/IJGCMS.2015100103

    Article  Google Scholar 

  • Jong, M.S.-Y., Tsai, C.-C., Xie, H., & Kwan-Kit Wong, F. (2020). Integrating interactive learner-immersed video-based virtual reality into learning and teaching of physical geography. British Journal of Educational Technology, 51(6), 2064–2079. https://doi.org/10.1111/bjet.12947

    Article  Google Scholar 

  • Kalyuga, S. (2011). Cognitive load theory: How many types of load does it really need? Educational Psychology Review, 23(1), 1–19. https://doi.org/10.1007/s10648-010-9150-7

    Article  Google Scholar 

  • Kavanagh, S., Luxton-Reilly, A., Wuensche, B., & Plimmer, B. (2017). A systematic review of virtual reality in education. Themes in Science and Technology Education, 10(2), 85–119.

    Google Scholar 

  • Klingenberg, S., Jørgensen, M. L. M., Dandanell, G., Skriver, K., Mottelson, A., & Makransky, G. (2020). Investigating the effect of teaching as a generative learning strategy when learning through desktop and immersive VR: A media and methods experiment. British Journal of Educational Technology, 51(6), 2115–2138. https://doi.org/10.1111/bjet.13029

    Article  Google Scholar 

  • Kozhevnikov, M., Gurlitt, J., & Kozhevnikov, M. (2013). Learning relative motion concepts in immersive and non-immersive virtual environments. Journal of Science Education and Technology, 22(6), 952–962. https://doi.org/10.1007/s10956-013-9441-0

    Article  Google Scholar 

  • Klippel, A., Zhao, J., Oprean, D., Wallgrün, J. O., Stubbs, C., La Femina, P., & Jackson, K. L. (2020). The value of being there: Toward a science of immersive virtual field trips. Virtual Reality, 24(4), 753–770. https://doi.org/10.1007/s10055-019-00418-5

    Article  Google Scholar 

  • Lamb, R. L., & Etopio, E. (2019). Virtual reality simulations and writing: A neuroimaging study in science education. Journal of Science Education and Technology, 28(5), 542–552. https://doi.org/10.1007/s10956-019-09785-9

    Article  Google Scholar 

  • Lamb, R. L., Etopio, E., Hand, B., & Yoon, S. Y. (2019). Virtual reality simulation: Effects on academic performance within two domains of writing in science. Journal of Science Education and Technology, 28(4), 371–381. https://doi.org/10.1007/s10956-019-09774-y

    Article  Google Scholar 

  • Lamb, R., Antonenko, P., Etopio, E., & Seccia, A. (2018). Comparison of virtual reality and hands on activities in science education via functional near infrared spectroscopy. Computers & Education, 124, 14–26. https://doi.org/10.1016/j.compedu.2018.05.014

    Article  Google Scholar 

  • Lamb, R., Lin, J., & Firestone, J. B. (2020). Virtual reality laboratories: A way forward for schools? Eurasia Journal of Mathematics, Science and Technology Education, 16(6). https://doi.org/10.29333/ejmste/8206

  • Lee, J. (1999). Effectiveness of computer-based instructional simulation: A meta analysis. International Journal of Instructional Media, 26(1), 71–85. Retrieved January 15, 2021, from https://www.learntechlib.org/p/85364

  • Lee, J., Hong, N. L., & Ling, N. L. (2001). An analysis of students’ preparation for the virtual learning environment. The Internet and Higher Education, 4(3), 231–242. https://doi.org/10.1016/S1096-7516(01)00063-X

    Article  Google Scholar 

  • Lindgren, R., & Johnson-Glenberg, M. C. (2013). Emboldened by embodiment: Six precepts regarding the future of embodied learning and mixed reality technologies. Educational Researcher, 42(8), 445–452. https://doi.org/10.3102/0013189X13511661

    Article  Google Scholar 

  • Lo, C. K., Hew, K. F., & Chen, G. (2017). Toward a set of design principles for mathematics flipped classrooms: A synthesis of research in mathematics education. Educational Research Review, 22, 50–73. https://doi.org/10.1016/j.edurev.2017.08.002

    Article  Google Scholar 

  • Lui, M., McEwen, R., & Mullally, M. (2020). Immersive virtual reality for supporting complex scientific knowledge: Augmenting our understanding with physiological monitoring. British Journal of Educational Technology, 51(6), 2181–2199. https://doi.org/10.1111/bjet.13022

    Article  Google Scholar 

  • Luo, H., Li, G., Feng, Q., Yang, Y., & Zuo, M. (2021). Virtual reality in K-12 and higher education: A systematic review of the literature from 2000 to 2019. Journal of Computer Assisted Learning, 37(3), 887–901. https://doi.org/10.1111/jcal.12538

    Article  Google Scholar 

  • Luo, Y., & Du, H. (2022). Learning with desktop virtual reality: Changes and interrelationship of self-efficacy, goal orientation, technology acceptance and learning behavior. Smart Learning Environments, 9(1), 22. https://doi.org/10.1186/s40561-022-00203-z

    Article  Google Scholar 

  • Lyne, D. S. (2013). Development of virtual reality applications for the construction industry using the Oculus Rift head mounted display. In Proceedings of the 13th International Conference on Construction Applications of Virtual Reality (pp. 30–31).

  • Makransky, G., & Lilleholt, L. (2018). A structural equation modeling investigation of the emotional value of immersive virtual reality in education. Educational Technology Research and Development, 66(5), 1141–1164. https://doi.org/10.1007/s11423-018-9581-2

    Article  Google Scholar 

  • Makransky, G., Wismer, P., & Mayer, R. (2018). A gender matching effect in learning with pedagogical agents in an immersive virtual reality science simulation. Journal of Computer Assisted Learning, 35. https://doi.org/10.1111/jcal.12335

  • Makransky, G., Borre-Gude, S., & Mayer, R. E. (2019a). Motivational and cognitive benefits of training in immersive virtual reality based on multiple assessments. Journal of Computer Assisted Learning, 35(6), 691–707. https://doi.org/10.1111/jcal.12375

    Article  Google Scholar 

  • Makransky, G., Terkildsen, T. S., & Mayer, R. E. (2019b). Adding immersive virtual reality to a science lab simulation causes more presence but less learning. Learning and Instruction, 60, 225–236. https://doi.org/10.1016/j.learninstruc.2017.12.007

    Article  Google Scholar 

  • Makransky, G., Petersen, G. B., & Klingenberg, S. (2020). Can an immersive virtual reality simulation increase students’ interest and career aspirations in science? British Journal of Educational Technology, 51(6), 2079–2097. https://doi.org/10.1111/bjet.12954

    Article  Google Scholar 

  • Makransky, G., Andreasen, N. K., Baceviciute, S., & Mayer, R. E. (2021). Immersive virtual reality increases liking but not learning with a science simulation and generative learning strategies promote learning in immersive virtual reality. Journal of Educational Psychology, 113(4), 719–735. https://doi.org/10.1037/edu0000473

    Article  Google Scholar 

  • Markowitz, D. M., Laha, R., Perone, B. P., Pea, R. D., & Bailenson, J. N. (2018). Immersive virtual reality field trips facilitate learning about climate change. Frontiers in Psychology, 9. Retrieved January 6, 2021, from https://www.frontiersin.org/article/10.3389/fpsyg.2018.02364

  • Mayer, R. E. (2009). Multimedia learning. Cambridge University Press. https://doi.org/10.1017/CBO9780511811678

    Book  Google Scholar 

  • Mayer, R. E. (2014a). Cognitive theory of multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (2nd ed., pp. 43–71). Cambridge University Press.

    Chapter  Google Scholar 

  • Mayer, R. E. (2014b). Computer games for learning: An evidence-based approach. MIT Press.

    Book  Google Scholar 

  • Mayer, R. (2014c). The Cambridge handbook of multimedia learning (Cambridge Handbooks in Psychology). Cambridge University Press.

    Book  Google Scholar 

  • Mayer, R. E., Bove, W., Bryman, A., Mars, R., & Tapangco, L. (1996). When less is more: Meaningful learning from visual and verbal summaries of science textbook lessons. Journal of Educational Psychology, 88(1), 64–73. https://doi.org/10.1037/0022-0663.88.1.64

    Article  Google Scholar 

  • Mayer, R. E., & Chandler, P. (2001). When learning is just a click away: Does simple user interaction foster deeper understanding of multimedia messages? Journal of Educational Psychology, 93, 390–397. https://doi.org/10.1037/0022-0663.93.2.390

    Article  Google Scholar 

  • Mayer, R. E., & Fiorella, L. (2014). Principles for reducing extraneous processing in multimedia learning: Coherence, signaling, redundancy, spatial contiguity, and temporal contiguity principles. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (2nd ed., pp. 279–315). New York, NY: Cambridge University Press. https://doi.org/10.1017/CBO9781139547369.015

  • Mayer, R. E., & Pilegard, C. (2014). Principles for managing essential processing in multimedia learning: Segmenting, pre-training, and modality principles. In The Cambridge handbook of multimedia learning, 2nd ed (pp. 316–344). Cambridge University Press. https://doi.org/10.1017/CBO9781139547369.016

  • Mayer, R. E., Dow, G. T., & Mayer, S. (2003). Multimedia learning in an interactive self-explaining environment: What works in the design of agent-based microworlds? Journal of Educational Psychology, 95, 806–812. https://doi.org/10.1037/0022-0663.95.4.806

    Article  Google Scholar 

  • Mayes, J. T., & Fowler, C. J. H. (1999). Learning technology and usability: A framework for understanding courseware. Interacting with Computers, 11, 485–497.

    Article  Google Scholar 

  • McLuhan, M. (1964). The medium is the message. MIT Press.

    Google Scholar 

  • Merchant, Z., Goetz, E. T., Cifuentes, L., Keeney-Kennicutt, W., & Davis, T. J. (2014). Effectiveness of virtual reality-based instruction on students’ learning outcomes in K-12 and higher education: A meta-analysis. Computers & Education, 70, 29–40. https://doi.org/10.1016/j.compedu.2013.07.033

    Article  Google Scholar 

  • Meyer, O. A., Omdahl, M. K., & Makransky, G. (2019). Investigating the effect of pre-training when learning through immersive virtual reality and video: A media and methods experiment. Computers & Education, 140, 103603. https://doi.org/10.1016/j.compedu.2019.103603

  • Moreno, R., & Mayer, R. (2007). Interactive multimodal learning environments. Educational Psychology Review, 19, 309–326. https://doi.org/10.1007/s10648-007-9047-2

    Article  Google Scholar 

  • Natale, A. F. D., Repetto, C., Riva, G., & Villani, D. (2020). Immersive virtual reality in K-12 and higher education: A 10-year systematic review of empirical research. British Journal of Educational Technology, 51(6), 2006–2033. https://doi.org/10.1111/bjet.13030

    Article  Google Scholar 

  • Parong, J., & Mayer, R. E. (2018). Learning science in immersive virtual reality. Journal of Educational Psychology, 110(6), 785–797. https://doi.org/10.1037/edu0000241

    Article  Google Scholar 

  • Parong, J., & Mayer, R. E. (2021). Cognitive and affective processes for learning science in immersive virtual reality. Journal of Computer Assisted Learning, 37(1), 226–241. https://doi.org/10.1111/jcal.12482

    Article  Google Scholar 

  • Pekrun, R. (2006). The control-value theory of achievement emotions: Assumptions, corollaries, and implications for educational research and practice. Educational Psychology Review, 18(4), 315–341.

    Article  Google Scholar 

  • Pekrun, R., & Stephens, E. J. (2010). Achievement emotions: A control-value approach. Social and Personality Psychology Compass, 4(4), 238–255. https://doi.org/10.1111/j.1751-9004.2010.00259.x

    Article  Google Scholar 

  • Pellas, N., Mystakidis, S., & Kazanidis, I. (2021). Immersive virtual reality in K-12 and higher education: A systematic review of the last decade scientific literature. Virtual Reality. https://doi.org/10.1007/s10055-020-00489-9

    Article  Google Scholar 

  • Petersen, G. B., Klingenberg, S., Mayer, R. E., & Makransky, G. (2020). The virtual field trip: Investigating how to optimize immersive virtual learning in climate change education. British Journal of Educational Technology, 51(6), 2099–2115. https://doi.org/10.1111/bjet.12991

    Article  Google Scholar 

  • Piaget, J. (2001). The psychology of intelligence. Oxford, UK: Routledge.

    Google Scholar 

  • Pirker, J., Lesjak, I., & Guetl, C. (2017). An educational physics laboratory in mobile versus room scale virtual reality – A comparative study. International Journal of Online Engineering (IJOE), 13, 106. https://doi.org/10.3991/ijoe.v13i08.7371

    Article  Google Scholar 

  • Plass, J. L., & Kaplan, U. (2016). Emotional design in digital media for learning. In Emotions, technology, design, and learning (pp. 131–161). Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-12-801856-9.00007-4

  • Plass, J. L., & Kalyuga, S. (2019). Four ways of considering emotion in cognitive load theory. Educational Psychology Review, 31(2), 339–359.

    Article  Google Scholar 

  • Porter, C. D., Smith, J. R. H., Stagar, E. M., Simmons, A., Nieberding, M., Orban, C. M., Brown, J., & Ayers, A. (2020). Using virtual reality in electrostatics instruction: The impact of training. Physical Review Physics Education Research, 16(2), 020119. https://doi.org/10.1103/PhysRevPhysEducRes.16.020119

  • Qin, T., Cook, M., & Courtney, M. (2021). Exploring chemistry with wireless, PC-less portable virtual reality laboratories. Journal of Chemical Education, 98(2), 521–529. https://doi.org/10.1021/acs.jchemed.0c00954

    Article  Google Scholar 

  • QSR International Pty Ltd. (2020). NVivo (released in March 2020). Retrieved March 28, 2022, from https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/home

  • Radianti, J., Majchrzak, T. A., Fromm, J., & Wohlgenannt, I. (2020). A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Computers & Education, 147, 103778. https://doi.org/10.1016/j.compedu.2019.103778

  • Rafi, A., Samsudin, K. A., & Said, C. S. (2008). Training in spatial visualization: The effects of training method and gender. Journal of Educational Technology & Society, 11(3), 127–140.

    Google Scholar 

  • Reeves, S. M., Crippen, K. J., & McCray, E. D. (2021). The varied experience of undergraduate students learning chemistry in virtual reality laboratories. Computers & Education, 175, 104320. https://doi.org/10.1016/j.compedu.2021.104320

    Article  Google Scholar 

  • Reeves, S. M., & Crippen, K. J. (2021). Virtual laboratories in undergraduate science and engineeringcourses: A systematic review, 2009–2019. Journal of Science Education and Technology, 30(1), 16–30. https://doi.org/10.1007/s10956-020-09866-0

    Article  Google Scholar 

  • Rigby, S., & Ryan, R. M. (2011). Glued to games: How video games draw us in and hold us spellbound. Praeger.

    Google Scholar 

  • Ryan, R. M., & Deci, E. L. (2016). Facilitating and hindering motivation, learning, and well-being in schools: Research and observations from self-determination theory. In K. R. Wentzel & D. B. Miele (Eds.), Handbook of motivation at school (2nd ed., pp. 96–119). Routledge.

    Google Scholar 

  • Sagnier, C., Loup-Escande, E., & Valléry, G. (2020). Effects of gender and prior experience in immersive user experience with virtual reality. In T. Ahram & C. Falcão (Eds.), Advances in Usability and User Experience (pp. 305–314). Springer International Publishing. https://doi.org/10.1007/978-3-030-19135-1_30

  • Salzman, M. C., Dede, C., Loftin, R. B., & Chen, J. (1999). A model for understanding how virtual reality aids complex conceptual learning. Presence: Teleoperators and Virtual Environments, 8(3), 293–316. https://doi.org/10.1162/105474699566242

  • Schnotz, W., & Kürschner, C. (2007). A reconsideration of cognitive load theory. Educational Psychology Review, 19(4), 469–508. https://doi.org/10.1007/s10648-007-9053-4

    Article  Google Scholar 

  • Shapiro, L. (2010). Embodied cognition. New York: Routledge. https://doi.org/10.4324/9780203850664

  • Slater, M., & Sanchez-Vives, M. V. (2016). Enhancing our lives with immersive virtual reality. Frontiers in Robotics and AI, 3, 74.

    Article  Google Scholar 

  • Strzys, M. P., Kapp, S., Thees, M., Klein, P., Lukowicz, P., Knierim, P., Schmidt, A., & Kuhn, J. (2018). Physics holo.lab learning experience: Using smartglasses for augmented reality labwork to foster the concepts of heat conduction. European Journal of Physics, 39(3), 035703. https://doi.org/10.1088/1361-6404/aaa8fb

  • Sun, R., Wu, Y. J., & Cai, Q. (2019). The effect of a virtual reality learning environment on learners’ spatial ability. Virtual Reality, 23(4), 385–398. https://doi.org/10.1007/s10055-018-0355-2

    Article  Google Scholar 

  • Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitive load theory. New York: Springer.

    Book  Google Scholar 

  • Sweller, J., & van Merrie ̈nboer, J. J., & Paas, F. (2019). Cognitive architecture and instructional design: 20 years later. Educational Psychology Review, 31(2), 261–292.

    Article  Google Scholar 

  • The Body, V. R. (2016). The Body VR: Journey inside a cell [Video Game]. New York, NY: The Body VR LLC.

    Google Scholar 

  • Tobias, S., & Fletcher, J. D. (2010). Introduction. In S. Tobias & J. D. Fletcher (Eds.), Computer games and instruction (pp. 3–16). Charlotte, NC: Information Age.

    Google Scholar 

  • Van Der Heijden, H. (2004). User acceptance of hedonic information systems. MIS Quarterly, 28(4), 695–704.

    Article  Google Scholar 

  • Vygotsky, L. S. (2016). Play and its role in the mental development of the child. International Research in Early Childhood Education, 7(2), 3–25.

    Google Scholar 

  • Waller, D. (2000). Individual differences in spatial learning from computer-simulated environments. Journal of Experimental Psychology. Applied, 6(4), 307–321. https://doi.org/10.1037//1076-898x.6.4.307

    Article  Google Scholar 

  • Waller, D., Knapp, D., & Hunt, E. (2001). Spatial representations of virtual mazes: The role of visual fidelity and individual differences. Human Factors, 43, 147–158. https://doi.org/10.1518/001872001775992561

    Article  Google Scholar 

  • Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review, 9(4), 625–636. https://doi.org/10.3758/BF03196322

    Article  Google Scholar 

  • Wohlgenannt, I., Fromm, J., Stieglitz, S., Radianti, J., & Majchrzak, T. A. (2019). Virtual reality in higher education: Preliminary results from a design-science-research project. International Conference on Information Systems Development (ISD). Retrieved January 14, 2021, from https://aisel.aisnet.org/isd2014/proceedings2019/NewMedia/5

  • Wu, B., Yu, X., & Gu, X. (2020). Effectiveness of immersive virtual reality using head-mounted displays on learning performance: A meta-analysis. British Journal of Educational Technology, 51(6), 1991–2005. https://doi.org/10.1111/bjet.13023

    Article  Google Scholar 

  • Zhao, J., Lin, L., Sun, J., & Liao, Y. (2020). Using the summarizing strategy to engage learners: Empirical evidence in an immersive virtual reality environment. The Asia-Pacific Education Researcher, 29(5), 473–482. https://doi.org/10.1007/s40299-020-00499-w

    Article  Google Scholar 

  • Zinchenko, Y. P., Khoroshikh, P. P., Sergievich, A. A., Smirnov, A. S., Tumyalis, A. V., Kovalev, A. I., Gutnikov, S. A., & Golokhvast, K. S. (2020). Virtual reality is more efficient in learning human heart anatomy especially for subjects with low baseline knowledge. New Ideas in Psychology, 59, 100786. https://doi.org/10.1016/j.newideapsych.2020.100

Download references

Funding

University of Hong Kong

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary K. W. Wong.

Ethics declarations

Ethical approval and consent to participate

This paper is a systematic review that analyses published studies, and, hence, it does not involve any primary data collection. Thus, no ethics approval was required for this review paper.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 1 Combination of words used in paper search
Table 2 Inclusion criteria
Table 3 Identified key themes derived from learning theories in IVR science applications
Table 4 Summary of IVR learning affordances modified from Natale et al. (2020)
Table 5 An overview of the design principles for IVR instruction
Table 6 An overview of studies included in the systematic review

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lui, A.L.C., Not, C. & Wong, G.K.W. Theory-Based Learning Design with Immersive Virtual Reality in Science Education: a Systematic Review. J Sci Educ Technol 32, 390–432 (2023). https://doi.org/10.1007/s10956-023-10035-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10956-023-10035-2

Keywords

Navigation