Skip to main content
Log in

Stochastic Limit-Cycle Oscillations of a Nonlinear System Under Random Perturbations

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Dynamical systems with \(\varepsilon \) small random perturbations appear in both continuous mechanical motions and discrete stochastic chemical kinetics. The present work provides a detailed analysis of the central limit theorem (CLT), with a time-inhomogeneous Gaussian process, near a deterministic limit cycle in \(\mathbb {R}^n\). Based on respectively the theory of random perturbations of dynamical systems and the WKB approximation that codes the large deviations principle (LDP), results are developed in parallel from both standpoints of stochastic trajectories and transition probability density and their relations are elucidated. We show rigorously the correspondence between the local Gaussian fluctuations and the curvature of the large deviation rate function near its infimum, connecting the CLT and the LDP of diffusion processes. We study uniform asymptotic behavior of stochastic limit cycles through the interchange of limits of time \(t\rightarrow \infty \) and \(\varepsilon \rightarrow 0\). Three further characterizations of stochastic limit cycle oscillators are obtained: (i) An approximation of the probability flux near the cycle; (ii) Two special features of the vector field for the cyclic motion; (iii) A local entropy balance equation along the cycle with clear physical meanings. Lastly and different from the standard treatment, the origin of the \(\varepsilon \) in the theory is justified by a novel scaling hypothesis via constructing a sequence of stochastic differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hopfield, J.J.: Physics, computation, and why biology looks so different. J. Theor. Biol. 171(1), 53–60 (1994)

    Article  Google Scholar 

  2. Peletier, M.A., van Santen, R.A., Steur, E.: Complexity Science: An Introduction. World Scientific, Singapore (2019)

    Book  MATH  Google Scholar 

  3. Anderson, P.W.: More is different. Science 177(4047), 393–396 (1972)

    Article  ADS  Google Scholar 

  4. Berg, H.C.: Random Walks in Biology. Princeton University Press, Princeton (1993)

    Google Scholar 

  5. Kurtz, T.G.: The relationship between stochastic and deterministic models for chemical reactions. J. Chem. Phys. 57(7), 2976–2978 (1972)

    Article  ADS  Google Scholar 

  6. Kramers, H.A.: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7(4), 284–304 (1940)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. Moyal, J.E.: Stochastic processes and statistical physics. J. R. Stat. Soc. B 11(2), 150–210 (1949)

    MathSciNet  MATH  Google Scholar 

  8. Hu, G.: Stationary solution of master equations in the large-system-size limit. Phys. Rev. A 36(12), 5782 (1987)

    Article  ADS  Google Scholar 

  9. van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. Elsevier, Amsterdam (1992)

    MATH  Google Scholar 

  10. Vellela, M., Qian, H.: Stochastic dynamics and non-equilibrium thermodynamics of a bistable chemical system: the Schlögl model revisited. J. R. Soc. Interface 6(39), 925–940 (2009)

    Article  Google Scholar 

  11. Feller, W.: The general diffusion operator and positivity preserving semi-groups in one dimension. Ann. Math. 60, 417–436 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  12. Freidlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  13. Donsker, M.D., Varadhan, S.R.S.: Asymptotic evaluation of certain Markov process expectations for large time, I. Commun. Pure Appl. Math. 28(1), 1–47 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  14. Donsker, M.D., Varadhan, S.R.S.: Asymptotic evaluation of certain Markov process expectations for large time, II. Commun. Pure Appl. Math. 28(2), 279–301 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  15. Donsker, M.D., Varadhan, S.R.S.: Asymptotic evaluation of certain Markov process expectations for large time-III. Commun. Pure Appl. Math. 29(4), 389–461 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  16. Donsker, M.D., Varadhan, S.R.S.: Asymptotic evaluation of certain Markov process expectations for large time. IV. Commun. Pure Appl. Math. 36(2), 183–212 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Keizer, J.: Statistical Thermodynamics of Nonequilibrium Processes. Springer-Verlag, Berlin (1987)

    Book  Google Scholar 

  18. Gardiner, C.: Stochastic Methods. Springer, Berlin (2009)

    MATH  Google Scholar 

  19. Fleming, W.H.: Exit probabilities and optimal stochastic control. Appl. Math. Optim. 4(1), 329–346 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  20. Evans, L.C., Ishii, H.: A PDE approach to some asymptotic problems concerning random differential equations with small noise intensities. Ann. Inst. Henri Poincare (C) Non Linear Anal. 2(1), 1–20 (1985)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  21. Feng, J., Kurtz, T.G.: Large Deviations for Stochastic Processes. American Mathematical Society, Providence (2006)

    Book  MATH  Google Scholar 

  22. Kubo, R., Matsuo, K., Kitahara, K.: Fluctuation and relaxation of macrovariables. J. Stat. Phys. 9(1), 51–96 (1973)

    Article  ADS  Google Scholar 

  23. Graham, R., Tél, T.: On the weak-noise limit of Fokker–Planck models. J. Stat. Phys. 35(5–6), 729–748 (1984)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  24. Donsker, M.D., Varadhan, S.R.S.: Large deviations for stationary Gaussian processes. Commun. Math. Phys. 97(1–2), 187–210 (1985)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  25. Bryc, W., Dembo, A.: Large deviations for quadratic functionals of Gaussian processes. J. Theor. Probab. 10(2), 307–332 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Holland, C.J.: Stochastically perturbed limit cycles. J. Appl. Probab. 15(2), 311–320 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dykman, M., Chu, X., Ross, J.: Stationary probability distribution near stable limit cycles far from Hopf bifurcation points. Phys. Rev. E 48(3), 1646 (1993)

    Article  ADS  Google Scholar 

  28. Vance, W., Ross, J.: Fluctuations near limit cycles in chemical reaction systems. J. Chem. Phys. 105(2), 479–487 (1996)

    Article  ADS  Google Scholar 

  29. Ge, H., Qian, H.: Landscapes of non-gradient dynamics without detailed balance: stable limit cycles and multiple attractors. Chaos 22(2), 023140 (2012)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  30. Li, C., Wang, J.: Landscape and flux reveal a new global view and physical quantification of mammalian cell cycle. Proc. Natl. Acad. Sci. 111(39), 14130–14135 (2014)

    Article  ADS  Google Scholar 

  31. Lin, L., Yu, H., Zhou, X.: Quasi-potential calculation and minimum action method for limit cycle. J. Nonlinear Sci. 29(3), 961–991 (2019)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  32. Kurrer, C., Schulten, K.: Effect of noise and perturbations on limit cycle systems. Physica D 50(3), 311–320 (1991)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  33. Bittanti, S., Bolzern, P., Colaneri, P.: Stability analysis of linear periodic systems via the Lyapunov equation. IFAC Proc. 17(2), 213–216 (1984)

    Article  Google Scholar 

  34. Pastor, A., Hernández, V.: Differential periodic Riccati equations: existence and uniqueness of nonnegative definite solutions. Math. Control Signals Syst. 6(4), 341–362 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  35. Chen, Y., Chen, S.: Existence of positive definite solution to periodic Riccati differential equation. Proceedings of the 3rd World Congress on Intelligent Control and Automation (Cat. No. 00EX393) 4, 2820–2823 (2000)

  36. Zhou, B., Duan, G.R.: Periodic Lyapunov equation based approaches to the stabilization of continuous-time periodic linear systems. IEEE Trans. Autom. Control 57(8), 2139–2146 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Qian, H.: Mathematical formalism for isothermal linear irreversibility. Proc. R. Soc. Lond. A 457(2011), 1645–1655 (2001)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  38. Kwon, C., Ao, P., Thouless, D.J.: Structure of stochastic dynamics near fixed points. Proc. Natl. Acad. Sci. USA 102(37), 13029–13033 (2005)

    Article  ADS  Google Scholar 

  39. Qian, H.: Nonlinear stochastic dynamics of mesoscopic homogeneous biochemical reaction systems-an analytical theory. Nonlinearity 24(6), R19 (2011)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  40. Wang, J., Xu, L., Wang, E.: Potential landscape and flux framework of nonequilibrium networks: robustness, dissipation, and coherence of biochemical oscillations. Proc. Natl. Acad. Sci. USA 105(34), 12271–12276 (2008)

    Article  ADS  Google Scholar 

  41. Wang, J., Xu, L., Wang, E.: Robustness, dissipations and coherence of the oscillation of circadian clock: potential landscape and flux perspectives. PMC Biophys. 1(1), 7 (2008)

    Article  Google Scholar 

  42. Wang, J., Zhang, K., Wang, E.: Kinetic paths, time scale, and underlying landscapes: A path integral framework to study global natures of nonequilibrium systems and networks. J. Chem. Phys. 133(12), 09B613 (2010)

    Article  Google Scholar 

  43. Xu, L., Zhang, F., Wang, E., Wang, J.: The potential and flux landscape, lyapunov function and non-equilibrium thermodynamics for dynamic systems and networks with an application to signal-induced ca2+ oscillation. Nonlinearity 26(2), R69 (2012)

    Article  MATH  Google Scholar 

  44. Feng, H., Han, B., Wang, J.: Landscape and global stability of nonadiabatic and adiabatic oscillations in a gene network. Biophys. J. 102(5), 1001–1010 (2012)

    Article  ADS  Google Scholar 

  45. Feng, H., Zhang, K., Wang, J.: Non-equilibrium transition state rate theory. Chem. Sci. 5(10), 3761–3769 (2014)

    Article  Google Scholar 

  46. Zhang, F., Xu, L., Zhang, K., Wang, E., Wang, J.: The potential and flux landscape theory of evolution. J. Chem. Phys. 137(6), 065102 (2012)

    Article  ADS  Google Scholar 

  47. Zhang, F., Xu, L., Wang, J.: The extinction differential induced virulence macroevolution. Chem. Phys. Lett. 599, 38–43 (2014)

    Article  ADS  Google Scholar 

  48. Xu, L., Zhang, F., Zhang, K., Wang, E., Wang, J.: The potential and flux landscape theory of ecology. PLoS ONE 9(1), e86746 (2014)

    Article  ADS  Google Scholar 

  49. Tong, Y.L.: The Multivariate Normal Distribution. Springer Science & Business Media, Berlin (2012)

    Google Scholar 

  50. Jiang, D.Q., Qian, M., Qian, M.P.: Mathematical Theory of Nonequilibrium Steady States: On the Frontier of Probability and Dynamical Systems. Springer-Verlag, Berlin Heidelberg (2004)

    Book  MATH  Google Scholar 

  51. Nakanishi, H., Sakaue, T., Wakou, J.: Hamilton-Jacobi method for molecular distribution function in a chemical oscillator. J. Chem. Phys. 139(21), 12B602 (2013)

    Article  Google Scholar 

  52. Qian, H., Cheng, Y.C., Yang. Y.J.: Kinematic basis of emergent energetics of complex dynamics. EPL (Europhysics Letters) 131(5), 50002 (2020)

  53. Bender, K.M., Orszag, S.A.: Advanced Mathematical Methods for Scientists and Engineers: I Asymptotic methods and perturbation theory. Springer Science & Business Media, Berlin (2013)

    MATH  Google Scholar 

  54. Zeitouni, O., Dembo, A.: Large Deviations Techniques and Applications. Springer Science & Business Media, Berlin (2009)

    MATH  Google Scholar 

  55. Bryc, W.: A remark on the connection between the large deviation principle and the central limit theorem. Stat. Probab. Lett. 18(4), 253–256 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  56. Touchette, H.: The large deviation approach to statistical mechanics. Phys. Rep. 478(1–3), 1–69 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  57. Zhou, P., Li, T.: Construction of the landscape for multi-stable systems: potential landscape, quasi-potential, A-type integral and beyond. J. Chem. Phys. 144(9), 094109 (2016)

    Article  ADS  Google Scholar 

  58. Grenier, E.: Semiclassical limit of the nonlinear Schrödinger equation in small time. Proc. Am. Math. Soc. 126(2), 523–530 (1998)

    Article  MATH  Google Scholar 

  59. Benci, V., D’Aprile, T.: The semiclassical limit of the nonlinear Schrödinger equation in a radial potential. J. Differ. Equ. 184(1), 109–138 (2002)

    Article  MATH  ADS  Google Scholar 

  60. Evans, L.C.: Partial Differential Equations Graduate Studies in Mathematics. American Mathematical Society, Providence (1998)

    Google Scholar 

  61. Qian, H.: Mesoscopic nonequilibrium thermodynamics of single macromolecules and dynamic entropy-energy compensation. Phys. Rev. E 65(1), 016102 (2001)

    Article  ADS  Google Scholar 

  62. Dobbertin, R.: On functional relations between reduced distribution functions and entropy production by non-hamiltonian perturbations. Phys. Scr. 14(3), 85 (1976)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  63. Steeb, W.H.: Generalized Liouville equation, entropy, and dynamic systems containing limit cycles. Physica A 95(1), 181–190 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  64. Kardar, M.: Statistical Physics of Fields. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  65. Kurtz, T.G.: The central limit theorem for Markov chains. Ann. Probab. 10, 557–560 (1981)

    MathSciNet  MATH  Google Scholar 

  66. Donsker, M.D.: An Invariance Principle for Certain Probability Limit Theorems. AMS, Providence (1951)

    MATH  Google Scholar 

  67. Bressloff, P.C., MacLaurin, J.N.: A variational method for analyzing stochastic limit cycle oscillators. SIAM J. Appl. Dyn. Syst. 17(3), 2205–2233 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  68. Mendler, M., Falk, J., Drossel, B.: Analysis of stochastic bifurcations with phase portraits. PLoS ONE 13(4), e196256 (2018)

    Article  Google Scholar 

  69. Ao, P.: Potential in stochastic differential equations: novel construction. J. Phys. A 37(3), L25 (2004)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  70. Bleistein, N.A., Handelsman, R.A.: Asymptotic Expansions of Integrals. Courier Corporation, Chelmsford (1986)

    MATH  Google Scholar 

Download references

Acknowledgements

We thank Lowell Thompson and Ying-Jen Yang for many helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Chen Cheng.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Udo Seifert.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

H.Q. is partially supported by the Olga Jung Wan Endowed Professorship.

Appendix

Appendix

1.1 Proofs of Lemmas 2.2 and 2.3

1.1.1 Proof of Lemma 2.2

Proof

For the special case of \(\mathbf{x}\in \mathbb {R}\), \(\varTheta =3\), \(\varLambda =15\), and \(\varvec{\varXi }=[h''(\mathbf{x}^*)]^{-1}\). Then Eq. (2.25)

$$\begin{aligned} \eta (\mathbf{x}^*) = \frac{f''(\mathbf{x}^*)}{2h''(\mathbf{x})}-\left[ \frac{f'(\mathbf{x}^*)h'''(\mathbf{x}^*)}{2[h''(\mathbf{x}^*)]^2}+ \frac{f(\mathbf{x}^*)h''''(\mathbf{x}^*)}{8[h''(\mathbf{x}^*)]^2}\right] + \frac{5f(\mathbf{x}^*)[h'''(\mathbf{x}^*)]^2}{24[h'''(\mathbf{x}^*)]^3}. \end{aligned}$$

This result can be found on P. 273 of [53], Eq. (6.4.35).

For the general case,

$$\begin{aligned}&\int _{\mathbb {R}^n} f(\mathbf{x})e^{-\frac{h(\mathbf{x})}{\varepsilon }}\mathrm{d}\mathbf{x}\nonumber \\&\quad = \int _{\mathbb {R}^n} \left[ f(\mathbf{x}^*) + (\mathbf{x}-\mathbf{x}^*)\cdot \nabla f(\mathbf{x}^*) +\frac{(\mathbf{x}-\mathbf{x}^*)^T\nabla \nabla f(\mathbf{x}^*)(\mathbf{x}-\mathbf{x}^*)}{2} + \dots \right] \nonumber \\&\qquad \times \exp \left[ -\frac{h(\mathbf{x}^*)}{\varepsilon }-\frac{(\mathbf{x}-\mathbf{x}^*)_ih''_{ij}(\mathbf{x}^*) (\mathbf{x}-\mathbf{x}^*)_j}{2\varepsilon } -\frac{h'''_{ijk}(\mathbf{x}^*)(\mathbf{x}-\mathbf{x}^*)_i (\mathbf{x}-\mathbf{x}^*)_j(\mathbf{x}-\mathbf{x}^*)_k}{6\varepsilon } \right. \nonumber \\&\qquad - \left. \frac{h''''_{ijk\ell }(\mathbf{x}^*)(\mathbf{x}-\mathbf{x}^*)_i (\mathbf{x}-\mathbf{x}^*)_j(\mathbf{x}-\mathbf{x}^*)_k(\mathbf{x}-\mathbf{x}^*)_{\ell }}{24\varepsilon } + \cdots \right] \mathrm{d}\mathbf{x}\nonumber \\&\quad = e^{-\frac{h(\mathbf{x}^*)}{\varepsilon }} \int _{\mathbb {R}^N} \left[ f(\mathbf{x}^*) +(\mathbf{x}-\mathbf{x}^*)\cdot \nabla f(\mathbf{x}^*) + \frac{(\mathbf{x}-\mathbf{x}^*)^T\nabla \nabla f(\mathbf{x}^*) (\mathbf{x}-\mathbf{x}^*)}{2} + \dots \right] \nonumber \\&\qquad \times \left[ 1 -\frac{h'''_{ijk}(\mathbf{x}^*)}{6\varepsilon }(\mathbf{x}-\mathbf{x}^*)_i (\mathbf{x}-\mathbf{x}^*)_j(\mathbf{x}-\mathbf{x}^*)_k - \frac{h''''_{ijk\ell }(\mathbf{x}^*)}{24\varepsilon }(\mathbf{x}-\mathbf{x}^*)_i (\mathbf{x}-\mathbf{x}^*)_j \right. \nonumber \\&\qquad \times \left. (\mathbf{x}-\mathbf{x}^*)_k(\mathbf{x}-\mathbf{x}^*)_{\ell } + \frac{\big [h'''_{ijk}(\mathbf{x}^*)(\mathbf{x}-\mathbf{x}^*)_i(\mathbf{x}-\mathbf{x}^*)_j(\mathbf{x}-\mathbf{x}^*)_k\big ]^2}{72\varepsilon ^2} +\cdots \right] \nonumber \\&\qquad \times e^{-\frac{ (\mathbf{x}-\mathbf{x}^*)^T\nabla \nabla h(\mathbf{x}^*) (\mathbf{x}-\mathbf{x}^*)}{2\varepsilon } } \mathrm{d}\mathbf{x}\nonumber \\&\quad = e^{-\frac{h(\mathbf{x}^*)}{\varepsilon }} \int _{\mathbb {R}^n} e^{-\frac{(\mathbf{x}-\mathbf{x}^*)^T\nabla \nabla h(\mathbf{x}^*)(\mathbf{x}-\mathbf{x}^*) }{2\varepsilon } } \left[ f(\mathbf{x}^*) + (\mathbf{x}-\mathbf{x}^*)\cdot \nabla f(\mathbf{x}^*) \right. \nonumber \\&\qquad + \frac{ (\mathbf{x}-\mathbf{x}^*)^T\nabla \nabla f(\mathbf{x}^*) (\mathbf{x}-\mathbf{x}^*)}{2} - \frac{ f(\mathbf{x}^*)h'''_{ijk}(\mathbf{x}^*)}{6\varepsilon }(\mathbf{x}-\mathbf{x}^*)_i (\mathbf{x}-\mathbf{x}^*)_j(\mathbf{x}-\mathbf{x}^*)_k \nonumber \\&\qquad - \left( \frac{f'_i(\mathbf{x}^*)h'''_{jk\ell }(\mathbf{x}^*)}{6\varepsilon } + \frac{f(\mathbf{x}^*)h''''_{ijk\ell }(\mathbf{x}^*)}{24\varepsilon } \right) (\mathbf{x}-\mathbf{x}^*)_i (\mathbf{x}-\mathbf{x}^*)_j(\mathbf{x}-\mathbf{x}^*)_k(\mathbf{x}-\mathbf{x}^*)_{\ell } \nonumber \\&\qquad + \left. \frac{f(\mathbf{x}^*)[h'''_{ijk}(\mathbf{x}^*)(\mathbf{x}-\mathbf{x}^*)_i(\mathbf{x}-\mathbf{x}^*)_j(\mathbf{x}-\mathbf{x}^*)_k ]^2}{72\varepsilon ^2} + \cdots \right] \mathrm{d}\mathbf{x}\nonumber \\&\quad = \sqrt{\frac{(2\pi \varepsilon )^N}{\det \big [\nabla \nabla h(x^*)\big ]}} e^{-\frac{h(\mathbf{x}^*)}{\varepsilon }} \left\{ f(\mathbf{x}^*) + \frac{\varepsilon f''_{ij}(\mathbf{x}^*)}{2}\varXi _{ij}(\mathbf{x}^*) \right. \nonumber \\&\qquad - \varepsilon \left[ \frac{f'_i(\mathbf{x}^*)h'''_{jk\ell }(\mathbf{x}^*)}{6} + \frac{f(\mathbf{x}^*)h''''_{ijk\ell }(x^*)}{24} \right] \varXi ^{\frac{1}{2}}_{i\mu } \varXi ^{\frac{1}{2}}_{j\nu }\varXi ^{\frac{1}{2}}_{k\rho } \varXi ^{\frac{1}{2}}_{\ell \kappa }\varTheta _{\mu \nu \rho \kappa } \nonumber \\&\qquad + \left. \varepsilon \left( \frac{f(\mathbf{x}^*)[h'''_{ijk}(\mathbf{x}^*)]^2}{72} \right) \varXi ^{-\frac{1}{2}}_{i\mu } \varXi ^{-\frac{1}{2}}_{i\mu '}\varXi ^{-\frac{1}{2}}_{j\nu }\varXi ^{-\frac{1}{2}}_{j\nu '}\varXi ^{-\frac{1}{2}}_{k\rho }\varXi ^{-\frac{1}{2}}_{k\rho '} \varLambda _{\mu \mu '\nu \nu '\rho \rho '} + \cdots \right\} . \end{aligned}$$
(6.1)

A multivariate normal distribution with covariance matrix \(\varvec{\varXi }\), which is positive definite thus \(\varvec{\varXi }=\varvec{\varXi }^{\frac{1}{2}}\varvec{\varXi }^{\frac{T}{2}}\) [70], has

$$\begin{aligned}&\frac{1}{\big [ \big (2\pi \varepsilon \big )^N \det \big (\varvec{\varXi }\big )\big ]^{\frac{1}{2}} } \int _{\mathbb {R}^n} f''_{ij}(\mathbf{0})x_ix_j \exp \left[ -\frac{1}{2\varepsilon }\mathbf{x}^T \varvec{\varXi }^{-1} \mathbf{x}\right] \mathrm{d}\mathbf{x}\\&\quad = \frac{\varepsilon \varXi ^{\frac{1}{2}}_{i\nu } \varXi ^{\frac{1}{2}}_{j\mu } f''_{ij}(\mathbf{0})}{ (2\pi )^{N/2} } \int _{\mathbb {R}^n}y_{\nu }y_{\mu } \exp \left[ -\frac{\mathbf{y}^T\mathbf{y}}{2} \right] \mathrm{d}\mathbf{y}= \varepsilon f''_{ij}(\mathbf{0})\varXi _{ij}, \end{aligned}$$

the Frobenius product of the Hessian matrix and covariant matrix \(\varvec{\varXi }\),

$$\begin{aligned}&\Big [ \big (2\pi \varepsilon \big )^n \det \big (\varvec{\varXi }\big )\Big ]^{-\frac{1}{2}} \int _{\mathbb {R}^n} f'''_{ijk}(\mathbf{0})x_ix_jx_k \exp \left[ -\frac{1}{2\varepsilon }\mathbf{x}^T \varvec{\varXi }\mathbf{x}\right] \mathrm{d}\mathbf{x}= 0, \\&\Big [ \big (2\pi \varepsilon \big )^n \det \big (\varvec{\varXi }\big )\Big ]^{-\frac{1}{2}} \int _{\mathbb {R}^n} f''''_{ijk\ell }(\mathbf{0})x_ix_jx_kx_{\ell } \exp \left[ -\frac{1}{2\varepsilon }\mathbf{x}^T \varvec{\varXi }\mathbf{x}\right] \mathrm{d}\mathbf{x}\\&\quad = \varepsilon ^2 f''''_{ijk\ell }(\mathbf{0}) \varXi ^{\frac{1}{2}}_{i\mu }\varXi ^{\frac{1}{2}}_{j\nu } \varXi ^{\frac{1}{2}}_{k\rho }\varXi ^{\frac{1}{2}}_{\ell \kappa } \varTheta _{\mu \nu \rho \kappa },\\&\Big [ \big (2\pi \varepsilon \big )^n \det \big (\varvec{\Sigma }\big )\Big ]^{-\frac{1}{2}} \int _{\mathbb {R}^n} f'''_{ijk}(\mathbf{0})x_i^2x_j^2x_k^2 \exp \left[ -\frac{1}{2\varepsilon }\mathbf{x}^T \varvec{\varXi }\mathbf{x}\right] \mathrm{d}\mathbf{x}\\= & {} \varepsilon ^3\big (2\pi \big )^{-\frac{n}{2}} f'''_{ijk}(\mathbf{0}) \varXi ^{-\frac{1}{2}}_{i\mu } \varXi ^{-\frac{1}{2}}_{i\mu '}\varXi ^{-\frac{1}{2}}_{j\nu }\varXi ^{-\frac{1}{2}}_{j\nu '}\varXi ^{-\frac{1}{2}}_{k\rho }\varXi ^{-\frac{1}{2}}_{k\rho '} \int _{\mathbb {R}^n} y_{\mu }y_{\mu '}y_{\nu }y_{\nu '}y_{\rho } y_{\rho '} \exp \left[ -\frac{\mathbf{y}^T\mathbf{y}}{2}\ \right] \mathrm{d}\mathbf{x}\\= & {} \varepsilon ^3 f'''_{ijk}(\mathbf{0}) \varXi ^{-\frac{1}{2}}_{i\mu } \varXi ^{-\frac{1}{2}}_{i\mu '}\varXi ^{-\frac{1}{2}}_{j\nu }\varXi ^{-\frac{1}{2}}_{j\nu '}\varXi ^{-\frac{1}{2}}_{k\rho }\varXi ^{-\frac{1}{2}}_{k\rho '} \varLambda _{\mu \mu '\nu \nu '\rho \rho '}. \end{aligned}$$

Applying (2.23) to both numerator and denominator of the lhs of (2.24),

$$\begin{aligned}&\frac{ f(\mathbf{x}^*)+\varepsilon \left\{ \begin{array}{c} \frac{f''_{ij}(\mathbf{x}^*)\varXi _{ij}}{2}-\left[ \frac{f'_i(\mathbf{x}^*)h'''_{jk\ell }(\mathbf{x}^*)}{6}+ \frac{f_{\alpha }(\mathbf{x}^*)h''''_{ijk\ell }(\mathbf{x}^*)}{24}\right] \varXi ^{\frac{1}{2}}_{i\mu } \varXi ^{\frac{1}{2}}_{j\nu }\varXi ^{\frac{1}{2}}_{k\rho } \varXi ^{\frac{1}{2}}_{\ell \kappa }\varTheta _{\mu \nu \rho \kappa } \\ + \frac{f(\mathbf{x}^*)[h'''_{ijk}(\mathbf{x}^*)]^2}{72} \varXi ^{-\frac{1}{2}}_{i\mu } \varXi ^{-\frac{1}{2}}_{i\mu '}\varXi ^{-\frac{1}{2}}_{j\nu }\varXi ^{-\frac{1}{2}}_{j\nu '}\varXi ^{-\frac{1}{2}}_{k\rho }\varXi ^{-\frac{1}{2}}_{k\rho '} \varLambda _{\mu \mu '\nu \nu '\rho \rho '} \end{array} \right\} + O(\varepsilon ^2)}{ 1+\varepsilon \left\{ \begin{array}{c} -\left[ \frac{h''''_{ijk\ell }(\mathbf{x}^*)}{24}\right] \varXi ^{\frac{1}{2}}_{i\mu } \varXi ^{\frac{1}{2}}_{j\nu }\varXi ^{\frac{1}{2}}_{k\rho } \varXi ^{\frac{1}{2}}_{\ell \kappa }\varTheta _{\mu \nu \rho \kappa } \\ + \frac{[h'''_{ijk}(\mathbf{x}^*)]^2}{72} \varXi ^{-\frac{1}{2}}_{i\mu } \varXi ^{-\frac{1}{2}}_{i\mu '}\varXi ^{-\frac{1}{2}}_{j\nu }\varXi ^{-\frac{1}{2}}_{j\nu '}\varXi ^{-\frac{1}{2}}_{k\rho }\varXi ^{-\frac{1}{2}}_{k\rho '} \varLambda _{\mu \mu '\nu \nu '\rho \rho '} \end{array} \right\} + O(\varepsilon ^2)}\\&\quad = f(\mathbf{x}^*) + \varepsilon \left[ \frac{f''_{ij}(\mathbf{x}^*)\varXi _{ij}}{2}- \frac{f'_i(\mathbf{x}^*)h'''_{jk\ell }(\mathbf{x}^*)\varXi ^{\frac{1}{2}}_{i\mu } \varXi ^{\frac{1}{2}}_{j\nu }\varXi ^{\frac{1}{2}}_{k\rho } \varXi ^{\frac{1}{2}}_{\ell \kappa }\varTheta _{\mu \nu \rho \kappa }}{6} \right] + O(\varepsilon ^2). \end{aligned}$$

1.1.2 Proof of Lemma 2.3

We only provide the proof for the case \(\mathbf{x}\in \mathbb {R}^1\), which is denoted by x. For higher dimensions, results are the same by using the notations from Lemma 2.2.

Proof

Let the global minimum of \([h(x)-\varepsilon \ln g(x)]\) be at \(\tilde{x}^*=x^*+\varDelta x(\varepsilon )\). Clearly, \(\varDelta x\rightarrow 0\) as \(\varepsilon \rightarrow 0\). In fact,

$$\begin{aligned}&\left[ h'(x)-\varepsilon \left( \frac{g'(x)}{g(x)}\right) \right] _{x=x^*+\varDelta x} = 0,\\&\quad h'(x^*)+h''(x^*)\varDelta x -\varepsilon \left( \frac{g'(x^*)}{g(x^*)}\right) = 0,\\&\quad \varDelta x = \varepsilon \left( \frac{g'(x^*)}{g(x^*)h''(x^*)}\right) +O\big (\varepsilon ^2\big ). \end{aligned}$$

Now we apply the Eq. (2.24) in Lemma 2.2:

$$\begin{aligned}&\frac{\displaystyle \int _{-\infty }^{\infty } f(x)g(x)e^{-\frac{h(x)}{\varepsilon }}\mathrm{d}x}{ \displaystyle \int _{-\infty }^{\infty } g(x) e^{-\frac{h(x)}{\varepsilon }}\mathrm{d}x } = \frac{\displaystyle \int _{-\infty }^{\infty } f(x)e^{-\frac{h(x)-\varepsilon \ln g(x)}{\varepsilon }}\mathrm{d}x}{ \displaystyle \int _{-\infty }^{\infty } e^{-\frac{h(x)-\varepsilon \ln g(x)}{\varepsilon }}\mathrm{d}x } \nonumber \\&\quad = f( \tilde{x}^*) + \varepsilon \left[ \frac{f''(\tilde{x}^*)}{2h''(\tilde{x}^*)}- \frac{f'(\tilde{x}^*)h'''(\tilde{x}^*)}{2[h''(\tilde{x}^*)]^2} \right] + O(\varepsilon ^2), \nonumber \\&\quad = f(x^*) +\varepsilon \underbrace{ \left( \frac{ f'(x^*)g'(x^*)}{g(x^*)h''(x^*)} \right. }_{ f'(x^*)\varDelta x\text { due to } g(x) } + \underbrace{ \frac{f''(x^*)}{2h''(x^*)} }_{ \text { due to } f(x) } - \underbrace{ \left. \frac{f'(x^*)h'''(x^*)}{2[h''(x^*)]^2} \right) }_{ \text { due to non-quadratic } h(x) } + O(\varepsilon ^2). \end{aligned}$$
(6.2)

For the terms on the order of \(\varepsilon \), replacing \(\tilde{x}^*\) by \(x^*\) only affects the order \(\varepsilon ^2\) term.

1.1.3 Proof of Lemma 6.1

Here we provide an additional Lemma, which is not used in the present work, but it is useful for related fields.

Lemma 6.1

$$\begin{aligned} \frac{\displaystyle \int _{-\infty }^{\infty } f^2(x)g(x)e^{-\frac{h(x)}{\varepsilon }}\mathrm{d}x}{ \displaystyle \int _{-\infty }^{\infty } g(x) e^{-\frac{h(x)}{\varepsilon }}\mathrm{d}x } - \left[ \frac{\displaystyle \int _{-\infty }^{\infty } f(x)g(x)e^{-\frac{h(x)}{\varepsilon }}\mathrm{d}x}{ \displaystyle \int _{-\infty }^{\infty } g(x) e^{-\frac{h(x)}{\varepsilon }}\mathrm{d}x } \right] ^2 = \varepsilon \left( \frac{f'^2(x^*)}{h''(x^*)} \right) + O\big (\varepsilon ^2\big ). \end{aligned}$$
(6.3)

Proof

$$\begin{aligned}&\frac{\displaystyle \int _{-\infty }^{\infty } f^2(x)g(x)e^{-\frac{h(x)}{\varepsilon }}\mathrm{d}x}{ \displaystyle \int _{-\infty }^{\infty } g(x) e^{-\frac{h(x)}{\varepsilon }}\mathrm{d}x } - \left[ \frac{\displaystyle \int _{-\infty }^{\infty } f(x)g(x)e^{-\frac{h(x)}{\varepsilon }}\mathrm{d}x}{ \displaystyle \int _{-\infty }^{\infty } g(x) e^{-\frac{h(x)}{\varepsilon }}\mathrm{d}x } \right] ^2 \nonumber \\&\quad = \varepsilon \left( \frac{ 2f(x^*)f'(x^*)g'(x^*)}{g(x^*)h''(x^*)}+ \frac{2f'^2(x^*)+2f(x^*)f''(x^*) }{2h''(x^*)}-\frac{2f(x^*)f'(x^*)h'''(x^*)}{2[h''(x^*)]^2} \right) \nonumber \\&\qquad - 2\varepsilon f(x^*) \left( \frac{ f'(x^*)g'(x^*)}{g(x^*)h''(x^*)}+ \frac{ f''(x^*) }{2h''(x^*)}-\frac{f'(x^*)h'''(x^*)}{2[h''(x^*)]^2} \right) + O\big (\varepsilon ^2\big ) \nonumber \\&\quad = \varepsilon \left( \frac{f'^2(x^*)}{h''(x^*)} \right) + O\big (\varepsilon ^2\big ). \end{aligned}$$
(6.4)

1.2 Proof of Theorem 3.3

Proof

Given \(\mathbf {x_1} \in \varGamma \), let \(\mathcal {P}_1\) be a plane containing \(\mathbf {x_1}\) and perpendicular to the vector \(\varvec{{\varvec{\gamma }}}(\mathbf {x_1})\). Given another point \(\mathbf {x}_2 \in \varGamma \), let \(\mathcal {P}_2\) be a plane perpendicular to the vector \(\varvec{{\varvec{\gamma }}}(\mathbf {x}_2)\). Let \(\mathcal {S}_1 \subset \mathcal {P}_1\) and \(\mathcal {S}_2 \subset \mathcal {P}_2\) be compact sets such that

$$\begin{aligned} \max _{\mathbf {x}, \mathbf {y} \in \mathcal {S}_1} ||\mathbf {x} - \mathbf {y} ||= \max _{\mathbf {x}, \mathbf {y} \in \mathcal {S}_2} ||\mathbf {x} - \mathbf {y} ||= \delta >0. \end{aligned}$$
(6.5)

We then can define a tube \(\varPhi (\delta )\) with two side boundaries \(\mathcal {S}_1\) and \(\mathcal {S}_2\) and \(\varGamma \subset \varPhi (\delta )\).

Recall that \(\varvec{\gamma }_\varepsilon ( \mathbf {x}) = \pi _\varepsilon (\mathbf {x})^{-1} \mathbf {J}[ \pi _\varepsilon (\mathbf {x}) ] \). By the stationary Fokker-Planck equation, we have that

$$\begin{aligned} \nabla \cdot ( \varvec{\gamma }_\varepsilon ( \mathbf {x}) \pi _\varepsilon (\mathbf {x})) = 0, \quad \text {for all} \ \mathbf {x} \in \mathbb {R}^n. \end{aligned}$$
(6.6)

Furthermore, by the Gauss’s theorem,

$$\begin{aligned} \int _{\mathcal {S}} \big ( \varvec{\gamma }_\varepsilon ( \mathbf {x}) \pi _\varepsilon (\mathbf {x}) \cdot \mathbf {n} \big ) \mathrm{d}\mathcal {S} = \int _{\mathcal {V}} \big ( \nabla \cdot (\varvec{\gamma }_\varepsilon ( \mathbf {x}) \pi _\varepsilon (\mathbf {x}) \big ) \mathrm{d}\mathcal {V} = 0, \end{aligned}$$
(6.7)

where \(\mathcal {S}\) in the surface of \(\varPhi (\delta )\), \(\mathbf{n}\) is the outward normal vector to \(\mathcal {S}\), and \(\mathcal {V}\) is the volume of \(\varPhi (\delta )\).

For the left hand side of Eq. (6.7), it can be written as a sum of three terms

$$\begin{aligned} \int _{\mathcal {S}} \big ( \varvec{\gamma }_\varepsilon ( \mathbf {x}) \pi _\varepsilon (\mathbf {x}) \cdot \mathbf {n} \big ) \mathrm{d}\mathcal {S} =&\int _{\mathcal {S}_1} \big ( \varvec{\gamma }_\varepsilon ( \mathbf {x}) \pi _\varepsilon (\mathbf {x}) \cdot \mathbf {n} \big ) \mathrm{d}\mathcal {S}_1 + \int _{\mathcal {S}_2} \big ( \varvec{\gamma }_\varepsilon ( \mathbf {x}) \pi _\varepsilon (\mathbf {x}) \cdot \mathbf {n} \big ) \mathrm{d}\mathcal {S}_2 \nonumber \\&+ \int _{\mathcal {S}_3} \big ( \varvec{\gamma }_\varepsilon ( \mathbf {x}) \pi _\varepsilon (\mathbf {x}) \cdot \mathbf {n} \big ) \mathrm{d}\mathcal {S}_3 , \end{aligned}$$
(6.8)

in which \(\mathcal {S}_3\) is the lateral surface of \(\varPhi (\delta )\) and \(\mathcal {S}_3 \cap \varGamma = \emptyset \).

For every \(\mathbf {y} \in \varGamma \), we denote \(\mathcal {S}_\mathbf{y}:=\varPhi (\delta ) \cap \mathcal {P}_\mathbf{y}\), \(\mathcal {P}_\mathbf{y}\) is the plane perpendicular to \({\varvec{\gamma }}(\mathbf{y})\). By Lemma 2.2,

$$\begin{aligned} \frac{ \int _{\mathcal {S}_\mathbf {y}} f(\mathbf {x}) e^{ \frac{-\varphi (\mathbf {x}) }{\varepsilon }} \mathrm{d}\mathcal {S}_\mathbf {y}}{\int _{\mathcal {S}_\mathbf {y}} e^{ \frac{-\varphi (\mathbf {x}) }{\varepsilon }} \mathrm{d}\mathcal {S}_\mathbf {y}} = f(\mathbf {y}) + O(\varepsilon ), \end{aligned}$$
(6.9)

for any continuous and bounded function \(f: \mathbb {R}^n \rightarrow \mathbb {R}\). Furthermore, by the definition of function v in Lemma 3.3, we can approximate the ratio of two integrals

$$\begin{aligned} \frac{ \int _{\mathcal {S}_\mathbf {y}} e^{ \frac{-\varphi (\mathbf {x}) }{\varepsilon }} \mathrm{d}\mathcal {S}_\mathbf {y} }{\int _{\mathcal {S}_1} e^{ \frac{-\varphi (\mathbf {x}) }{\varepsilon }} \mathrm{d}\mathcal {S}_1 } = \frac{\sqrt{2\pi \varepsilon v(\mathbf {y}) } e^{ \frac{-\varphi (\mathbf{y}) }{\varepsilon }} }{ \sqrt{2\pi \varepsilon v(\mathbf{x}) } e^{ \frac{-\varphi (\mathbf{x}_1) }{\varepsilon }} } + O(\varepsilon ) = \frac{ \sqrt{v(\mathbf {y})} }{ \sqrt{v(\mathbf {x}_1)} } + O(\varepsilon ), \end{aligned}$$
(6.10)

in which we use Laplace’s method in the first equality and \(\varphi \equiv 0\) on \(\varGamma \) in the second equality. To choose \(f(\mathbf {x}) = \omega ({\mathbf {x}})\) for Eq. (6.9), combined with the result of (6.10), we can obtain

$$\begin{aligned} \frac{ \int _{\mathcal {S}_\mathbf {y}} \omega (\mathbf {x}) e^{ \frac{-\varphi (\mathbf {x}) }{\varepsilon }} \mathrm{d}\mathcal {S}_\mathbf {y} }{\int _{\mathcal {S}_1} e^{ \frac{-\varphi (\mathbf {x}) }{\varepsilon }} \mathrm{d}\mathcal {S}_1 } = \frac{ \omega (\mathbf {y})\sqrt{v(\mathbf {y})} }{ \sqrt{v(\mathbf {x}_1)} } + O(\varepsilon ). \end{aligned}$$
(6.11)

Since the function \(e^{ -\frac{\varphi (\mathbf {x}) }{\varepsilon }}\) is concentrated near \(\varGamma \), we can further approximate the normalization factor \(\int _{\mathbb {R}^n} \omega (\mathbf {x}) e^{ \frac{-\varphi (\mathbf {x}) }{\varepsilon }} \mathrm{d}\mathbf {x}\) as follows

$$\begin{aligned} \frac{\int _{\mathbb {R}^n} \omega (\mathbf {x}) e^{ \frac{-\varphi (\mathbf {x}) }{\varepsilon }} \mathrm{d}\mathbf {x}}{\int _{\mathcal {S}_1} e^{ \frac{-\varphi (\mathbf {x}) }{\varepsilon }} \mathrm{d}\mathcal {S}_1 } = \frac{\int _{\varGamma } \int _{\mathcal {S}_\mathbf {y}} \omega (\mathbf {x}) e^{ \frac{-\varphi (\mathbf {x}) }{\varepsilon }} \mathrm{d}\mathcal {S}_\mathbf {y} \mathrm{d}\mathbf {\mathbf {y}} }{\int _{\mathcal {S}_1} e^{ \frac{-\varphi (\mathbf {x}) }{\varepsilon }} \mathrm{d}\mathcal {S}_1 } + O(\varepsilon ). \end{aligned}$$
(6.12)

By (6.11) and (6.12), we have that

$$\begin{aligned} \frac{\int _{\mathbb {R}^n} \omega (\mathbf {x}) e^{ \frac{-\varphi (\mathbf {x}) }{\varepsilon }} \mathrm{d}\mathbf {x}}{\int _{\mathcal {S}_1} e^{ \frac{-\varphi (\mathbf {x}) }{\varepsilon }} \mathrm{d}\mathcal {S}_1 } = \frac{\int _{\varGamma }\omega (\mathbf {y}) \sqrt{v(\mathbf {y})} \mathrm{d}\mathbf {\mathbf {y}} }{\sqrt{v(\mathbf {x}_1)}} + O(\varepsilon ). \end{aligned}$$
(6.13)

By the WKB expansion of \(\pi _\varepsilon \) in Eq. (3.6), with Eq. (6.13), the first term on the right hand side of Eq. (6.8) can be written as

$$\begin{aligned} \int _{\mathcal {S}_1} \big ( \varvec{\gamma }_\varepsilon ( \mathbf {x}) \pi _\varepsilon (\mathbf {x}) \cdot \mathbf {n} \big ) \mathrm{d}\mathcal {S}_1&= \frac{\int _{\mathcal {S}_1} \left( \varvec{\gamma }_\varepsilon ( \mathbf {x}) \cdot \mathbf {n} \right) \omega (\mathbf {x}) e^{ \frac{- \varphi (\mathbf {x}) }{\varepsilon }} \mathrm{d}\mathcal {S}_1 }{ \int _{\mathbb {R}^n} \omega (\mathbf {x}) e^{ \frac{-\varphi (\mathbf {x}) }{\varepsilon }} \mathrm{d}\mathbf {x} } \nonumber \\&= \left( \frac{\sqrt{v(\mathbf {x}_1)}}{ \int _{\varGamma } \omega (\mathbf {y}) \sqrt{v(\mathbf {y})} \mathrm{d}\mathbf {y}} \right) \left( \frac{ \int _{\mathcal {S}_1} \left( \varvec{\gamma }_\varepsilon ( \mathbf {x}) \cdot \mathbf {n} \right) \omega (\mathbf {x}) e^{ \frac{-\varphi (\mathbf {x}) }{\varepsilon }} \mathrm{d}\mathcal {S}_1 }{ \int _{\mathcal {S}_1} e^{ \frac{-\varphi (\mathbf {x}) }{\varepsilon }} \mathrm{d}\mathcal {S}_1 } \right) + O(\varepsilon ) . \end{aligned}$$
(6.14)

Note that \(\varvec{\gamma }_\varepsilon (\mathbf {x}) \rightarrow \varvec{\gamma }(\mathbf {x})\). Without loss of generality, we assume that \(\varvec{\gamma }(\mathbf {x}_1)\) is inflow and \(\varvec{\gamma }(\mathbf {x}_2)\) is outflow of \(\varPhi (\delta )\). To choose \(f(\mathbf {x}) = \left( \varvec{\gamma }_\varepsilon ( \mathbf {x}) \cdot \mathbf {n} \right) \omega (\mathbf {x})\) for Eq. (6.9), combined with Eq. (6.14), we then obtain

$$\begin{aligned} \int _{\mathcal {S}_1} \big ( \varvec{\gamma }_\varepsilon ( \mathbf {x}) \pi _\varepsilon (\mathbf {x}) \cdot \mathbf {n} \big ) \mathrm{d}\mathcal {S}_1 \rightarrow - C \sqrt{v(\mathbf {x}_1)} \omega (\mathbf {x}_1) ||\varvec{\gamma }(\mathbf {x}_1) ||\quad \text {as} \quad \varepsilon \rightarrow 0, \end{aligned}$$
(6.15)

in which the constant \(C = 1/ \int _{\varGamma } \omega (\mathbf {y}) \sqrt{v(\mathbf {y})} \mathrm{d}\mathbf {y} \). By the same approach, the second term on the right hand side of Eq. (6.8) has a convergence

$$\begin{aligned} \int _{\mathcal {S}_2} \big ( \varvec{\gamma }_\varepsilon ( \mathbf {x}) \pi _\varepsilon (\mathbf {x}) \cdot \mathbf {n} \big ) \mathrm{d}\mathcal {S}_2 \rightarrow C \sqrt{v(\mathbf {x}_2)} \omega (\mathbf {x}_2) ||\varvec{\gamma }(\mathbf {x}_2) ||\quad \text {as} \quad \varepsilon \rightarrow 0. \end{aligned}$$
(6.16)

Since \(\mathcal {S}_3 \cap \varGamma = \emptyset \), the third term

$$\begin{aligned} \int _{\mathcal {S}_3} \big ( \varvec{\gamma }_\varepsilon ( \mathbf {x}) \pi _\varepsilon (\mathbf {x}) \cdot \mathbf {n} \big ) \mathrm{d}\mathcal {S}_3 \rightarrow 0 \quad \text {as} \quad \varepsilon \rightarrow 0. \end{aligned}$$
(6.17)

To apply the results (6.15), (6.16), and (6.17) to the equations (6.7) and (6.8), we can show that

$$\begin{aligned} \Big | C \sqrt{v(\mathbf {x}_1)} \omega (\mathbf {x}_1) ||\varvec{\gamma }(\mathbf {x}_1) ||- C \sqrt{v(\mathbf {x}_2)} \omega (\mathbf {x}_2) ||\varvec{\gamma }(\mathbf {x}_2) ||\Big | = 0. \end{aligned}$$
(6.18)

Since Eq. (6.18) holds for every pair of two points on \(\varGamma \), \( \sqrt{v(\mathbf {x})} \omega (\mathbf {x}) ||\varvec{\gamma }(\mathbf {x}) ||\) is constant on \(\varGamma \).

For \(\mathbf{x}\in \varGamma \), the marginal density can be approximated by

$$\begin{aligned} g_\varepsilon (\mathbf {x}) = \frac{ \int _{\mathbb {R}^n \backslash \varGamma } \omega (\mathbf {y}) e^{ \frac{-\varphi (\mathbf {y}) }{\varepsilon }} \mathrm{d}\mathbf {y} }{ \int _{\mathbb {R}^n} \omega (\mathbf {y}) e^{ \frac{-\varphi (\mathbf {y}) }{\varepsilon }} \mathrm{d}\mathbf {y} } = \frac{\int _{\mathcal {S}_\mathbf{x}} \omega (\mathbf {y}) e^{ \frac{- \varphi (\mathbf {y}) }{\varepsilon }} \mathrm{d}\mathcal {S}_\mathbf{x}}{ \int _{\mathbb {R}^n} \omega (\mathbf {y}) e^{ \frac{-\varphi (\mathbf {y}) }{\varepsilon }} \mathrm{d}\mathbf {y} } + O(\varepsilon ) = \frac{ \omega (\mathbf {x}) \sqrt{v(\mathbf {x})}}{ \int _{\varGamma } \omega (\mathbf {y}) \sqrt{v(\mathbf {y})} \mathrm{d}\mathbf {y}} + O(\varepsilon ), \end{aligned}$$
(6.19)

which follows the steps from Eqs. (6.9) to (6.14) with choosing \(\varvec{\gamma }_\varepsilon ( \mathbf {x}) \cdot \mathbf {n} = 1\). Furthermore, since \(\sqrt{v(\mathbf{x})} \omega (\mathbf {x}) ||\gamma (\mathbf {x}) ||\) is constant on \(\varGamma \), with the result (6.19), there exists a constant K such that

$$\begin{aligned} g_\varepsilon (\mathbf {x})||\varvec{\gamma }(\mathbf {x}) ||= K + O(\varepsilon ). \end{aligned}$$
(6.20)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, YC., Qian, H. Stochastic Limit-Cycle Oscillations of a Nonlinear System Under Random Perturbations. J Stat Phys 182, 47 (2021). https://doi.org/10.1007/s10955-021-02724-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-021-02724-2

Keywords

Mathematics Subject Classification

Navigation