Skip to main content
Log in

Large Deviations for the Dynamic \(\Phi ^{2n}_d\) Model

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

We are dealing with the validity of a large deviation principle for a class of reaction–diffusion equations with polynomial non-linearity, perturbed by a Gaussian random forcing. We are here interested in the regime where both the strength of the noise and its correlation are vanishing, on a length scale \(\epsilon \) and \(\delta (\epsilon )\), respectively, with \(0<\epsilon ,\delta (\epsilon )\ll 1\). We prove that, under the assumption that \(\epsilon \) and \(\delta (\epsilon )\) satisfy a suitable scaling limit, a large deviation principle holds in the space of continuous trajectories with values both in the space of square-integrable functions and in Sobolev spaces of negative exponent. Our result is valid, without any restriction on the degree of the polynomial nor on the space dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertini, L., Buttà, P., Pisante, A.: Stochastic Allen-Cahn approximation of the mean curvature flow: large deviations upper bound. Arch. Ration. Mech. Anal. 224, 659–707 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Budhiraja, A., Dupuis, P., Maroulas, V.: Large deviations for infinite dimensional stochastic dynamical systems. Ann. Probab. 36, 1390–1420 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cerrai, S.: Second Order PDE’s in Finite and Infinite Dimension, Lecture Notes in Mathematics Series, vol. 1762. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  4. Cerrai, S., Debussche, A.: Large deviations for the two-dimensional stochastic Navier–Stokes equation with vanishing noise correlation. arXiv:1603.02527

  5. Cerrai, S., Freidlin, M.: Approximation of quasi-potentials and exit problems for multidimensional RDE’s with noise. Trans. AMS 363, 3853–3892 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Da Prato, G., Debussche, A.: Strong solutions to the stochastic quantization equations. Ann. Probab. 31, 1900–1916 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  8. Da Prato, G., Zabczyk, J.: Ergodicity for Infinite-Dimensional Systems. London Mathematical Society Lecture Note Series, vol. 229. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  9. Davies, E.B.: Heat Kernels and Spectral Theory. Cambridge University Press, Cambridge (1989)

    Book  MATH  Google Scholar 

  10. Grieser, D.: Uniform bounds for eigenfunctions of the Laplacian on manifolds with boundary. Commun. Partial Differ. Equ. 27, 1283–1299 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hairer, M.: A theory of regularity structures. Invent. Math. 198, 269–504 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hairer, M., Weber, H.: Large deviations for white-noise driven, nonlinear stochastic PDEs in two and three dimensions. Ann. Fac. Sci. Toulouse Math. 24, 55–92 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jona-Lasinio, G., Mitter, P.K.: On the stochastic quantization of field theory. Commun. Math. Phys. 101, 409–436 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jona-Lasinio, G., Mitter, P.K.: Large deviations estimates in the stochastic quantization of \(\Phi ^4_2\). Commun. Math. Phys. 130, 111–121 (1990)

    Article  MATH  Google Scholar 

  15. Mourrat, J.C., Weber, H.: Global well-posedness of the dynamic \(\Phi ^4\) model in the plane. Ann. Probab. 45, 2398–2476 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mourrat, J.C., Weber, H.: Global well-posedness of the dynamic \(\Phi ^4_3\) model on the torus. arXiv:1601.01234

  17. Ren, J., Zhang, X.: Freidlin–Wentzells large deviations for stochastic evolution equations. J. Funct. Anal. 254, 3148–3172 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Sandra Cerrai—Partially supported by the NSF grant DMS 1407615. Arnaud Debussche—Partially supported by the French government thanks to the ANR program Stosymap and the “Investissements d’Avenir” program ANR-11-LABX-0020-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Cerrai.

Appendix A

Appendix A

For every \(\delta >0\) and \(\theta \in \,(0,1)\), we denote

$$\begin{aligned} z_{\delta ,\theta }(t)=\int _0^t (t-s)^{-\frac{\theta }{2}} e^{(t-s)A} dw^\delta (s),\ \ \ \ \ t\ge 0. \end{aligned}$$
(A.1)

In case \(\theta =0\), we denote \(z_{\delta ,0}(t)=z_\delta (t)\).

Lemma A.1

Under Hypotheses 1 and 2, there exists \(\bar{\theta } \in \,(0,1)\) such that for any \(\kappa , p\ge 1\) and \(T>0\) and for any \(\delta \in \,(0,1)\) and \(\theta \in \,[0,\bar{\theta })\) we have

$$\begin{aligned} \sup _{t \in \,[0,T]}\,\mathbb {E} |z_{\delta ,\theta }(t)|^\kappa _{p}\le c_{\kappa ,p}(T)\,\Lambda _\theta (\delta )^{\frac{\kappa }{2}}, \end{aligned}$$
(A.2)

where

$$\begin{aligned} \Lambda _\theta (\delta )={\left\{ \begin{array}{ll} \displaystyle {\log \delta ^{-1},} &{} \text {if}\ \alpha =\theta =0,\ d=2,\\ \displaystyle {\delta ^{-(d-2(1-\theta )+\alpha )},} &{} \text {otherwise.} \end{array}\right. } \end{aligned}$$

Proof

According to (2.3), for every \(p\ge 2\) we have

$$\begin{aligned} \begin{array}{l} \displaystyle {\mathbb {E} |z_{\delta ,\theta }(t)|^p_{p}=\mathbb {E} \int _D\left| \,\sum _{k=1}^\infty \int _0^t(t-r)^{-\frac{\theta }{2}}e^{-(t-r)\alpha _k}\lambda _k(\delta ) e_k(\xi )\,d\beta _k(r)\right| ^p\,d\xi }\\ \displaystyle {\le c_p\int _D\left( \int _0^t (t-r)^{-\theta }\sum _{k=1}^\infty e^{-2(t-r)\alpha _k}\lambda _k^2(\delta ) |e_k(\xi )|^2\,dr\right) ^{\frac{p}{2}}\,d\xi }\\ \displaystyle {\le c_p |D| \left( \,\sum _{k=1}^\infty \lambda _k^2(\delta ) k^{\frac{\alpha }{d}}\int _0^t r^{-\theta } e^{-2r \alpha _k}\,dr\right) ^{\frac{p}{2}} \le c_p |D| \left( \,\sum _{k=1}^\infty \frac{\lambda _k^2(\delta )\, k^{\frac{\alpha }{d}}}{\alpha _k^{1-\theta }}\right) ^{\frac{p}{2}}.} \end{array} \end{aligned}$$

Hence, thanks to (2.2) and (3.2), we obtain,

$$\begin{aligned} \mathbb {E} |z_{\delta ,\theta }(t)|^p_{p}\le c_p(T)\,|D|\left( \,\sum _{k=1}^\infty \frac{1}{k^{\frac{2(1-\theta )-\alpha }{d}}(1+\delta k^{\frac{1}{d}})^{2\beta }}\right) ^{\frac{p}{2}}. \end{aligned}$$
(A.3)

Notice that, due to (3.3), there exists \(\bar{\theta } \in \,(0,1)\) such that the series above is convergent, for every fixed \(\delta >0\) and \(\theta \in \,[0,\bar{\theta })\).

We have

$$\begin{aligned} \sum _{k=1}^\infty \frac{1}{k^{\frac{2(1-\theta )-\alpha }{d}} (1+\delta k^{\frac{1}{d}})^{2\beta }}\sim \int _1^\infty \frac{1}{x^{\frac{2(1-\theta )-\alpha }{d}}(1+\delta x^{\frac{1}{d}})^{2\beta }}\,dx, \end{aligned}$$

and then, with a change of variable, we obtain

$$\begin{aligned} \sum _{k=1}^\infty \frac{1}{k^{\frac{2(1-\theta )-\alpha }{d}} (1+\delta k^{\frac{1}{d}})^{2\beta }}\sim d\, \delta ^{-(d-2(1-\theta )+\alpha )} \int _\delta ^\infty \frac{1}{x^{1-(d-2(1-\theta )+\alpha )}(1+x)^{2\beta }}\,dx. \end{aligned}$$

Therefore, if \(\alpha =\theta =0\) and \(d=2\), since \(\beta >0\) we have

$$\begin{aligned} \sum _{k=1}^\infty \frac{1}{k^{\frac{2(1-\theta )-\alpha }{d}} (1+\delta k^{\frac{1}{d}})^{2\beta }}\sim c\,\log \frac{1}{\delta }. \end{aligned}$$

Otherwise, according to Hypothesis 2, there exists \(\bar{\theta }>0\) such that

$$\begin{aligned} 2\beta -(d-2(1-\theta )+\alpha )>0, \end{aligned}$$

for every \(\theta \in \,[0,\bar{\theta })\). Hence, as \(d-2(1-\theta )+\alpha >0\), we get

$$\begin{aligned} \begin{array}{l} \displaystyle {\sum _{k=1}^\infty \frac{1}{k^{\frac{2(1-\theta ) -\alpha }{d}}(1+\delta k^{\frac{1}{d}})^{2\beta }}}\\ \displaystyle {\sim d\, \delta ^{-(d-2(1-\theta )+\alpha )}\int _0^\infty \frac{1}{x^{1-(d-2(1-\theta )+\alpha )}(1+x)^{2\beta }}\,dx\le c\, \delta ^{-(d-2(1-\theta )+\alpha )}.} \end{array} \end{aligned}$$

This implies (A.2), in case \(\kappa =p\). The general case follows from the Hölder inequality. \(\square \)

Next, for every \(s>0\), we have

$$\begin{aligned} \mathbb {E}\,|z_{\delta ,\theta }(t)|^2_{H^{-s}(D)}= \sum _{k=1}^\infty \int _0^t (t-r)^{-\theta } e^{-2(t-r)\alpha _k} \lambda _k^2(\delta )\alpha _k^{-s}\,dr. \end{aligned}$$

Therefore, by proceeding as in the proof of Lemma A.1 we conclude

Lemma A.2

Under Hypotheses 1 and 2, there exists \(\bar{\theta } \in \,(0,1)\) such that for any \(s, T>0\) and for any \(\delta \in \,(0,1)\) and \(\theta \in \,[0,\bar{\theta })\) we have

$$\begin{aligned} \sup _{t \in \,[0,T]}\,\mathbb {E}\, |z_{\delta ,\theta }(t)|^2_{H^{-s}(D)}\le c(T)\,\Gamma _{\theta ,s}(\delta ), \end{aligned}$$
(A.4)

where

$$\begin{aligned} \Gamma _{\theta ,s}(\delta )={\left\{ \begin{array}{ll} \displaystyle {\log \delta ^{-1},} &{} \text {if}\ \theta =s,\ d=2,\\ \displaystyle {\delta ^{-(d-2(1-\theta )-2s)},} &{} \text {otherwise.} \end{array}\right. } \end{aligned}$$

Now, let us consider the linear problem

$$\begin{aligned} dz(t)=Az(t)\,dt+dw^\delta (t),\ \ \ \ z(0)=0. \end{aligned}$$
(A.5)

Its unique mild solution \(z_\delta (t)\) coincides with the process \(z_{\delta ,0}(t)\) defined in (A.1), for \(\theta =0\). Notice that, due to (A.2), we have

$$\begin{aligned} \sup _{t \in \,[0,T]}\,{\mathbb {E}} |z_{\delta }(t)|^\kappa _{L^p(D)}\le c_{\kappa ,p}(T)|D|{\left\{ \begin{array}{ll} \left( \log \delta ^{-1} \right) ^{\frac{\kappa }{2}}, &{} \text {if } \alpha =0 \text { and } d=2,\\ &{}\\ \delta ^{-\frac{\kappa }{2}(d-2+\alpha )}, &{} \text {otherwise.} \end{array}\right. } \end{aligned}$$
(A.6)

By using a stochastic factorization argument, for every \(\theta \in \,(0,1)\), we have

$$\begin{aligned} z_\delta (t)=\frac{\sin (\theta \pi )}{2\pi }\int _0^t (t-\sigma )^{\frac{\theta }{2}-1}e^{(t-\sigma )A}z_{\delta ,\theta }(\sigma )\,d\sigma . \end{aligned}$$

If we take \(\kappa >2/\theta \), we have

$$\begin{aligned} |z_\delta (t)|^\kappa _H\le c_{\kappa ,\theta }\left( \int _0^T \sigma ^{\left( \frac{\theta }{2}-1\right) \frac{\kappa }{\kappa -1}}\, d\sigma \right) ^{\kappa -1}\int _0^t|z_{\delta ,\theta }(\sigma )|_H^\kappa \, d\sigma \le c_{\kappa ,\theta }(T)\int _0^t|z_{\delta ,\theta }(\sigma ) |_H^\kappa \,d\sigma . \end{aligned}$$

Therefore, if we fix \(\gamma >d-2+\alpha \) and we pick \( \theta _\gamma \in \,(0,\bar{\theta })\) such that

$$\begin{aligned} d-2(1-\theta _\gamma )+\alpha <\gamma , \end{aligned}$$

thanks to (A.2), we get

$$\begin{aligned} \mathbb {E}\,\sup _{t \in \,[0,T]} |z_\delta (t)|^\kappa _H\le c_{\kappa ,\sigma }(T)\,\delta ^{-\frac{\gamma \kappa }{2}}. \end{aligned}$$
(A.7)

Thus, we have proven the following result.

Lemma A.3

Under Hypotheses 1 and 2, for every \(\kappa \ge 2\) and \(\delta >0\) we have that for every

$$\begin{aligned} \gamma >d-2+\alpha , \end{aligned}$$

it holds

$$\begin{aligned} \mathbb {E}\sup _{t \in \,[0,T]} |z_\delta (t)|^\kappa _H\le c_{\kappa ,\gamma }(T)\, \delta ^{- \frac{\gamma \kappa }{2}},\ \ \ \ \delta \in \,(0,1). \end{aligned}$$
(A.8)

Finally, by using again a factorization argument, for every \(s>0\) and \(\kappa >\frac{2}{s}\vee 1\) we have

$$\begin{aligned}&|z_\delta (t)|^\kappa _{H^{-s}(D)}\le c\,\left( \int _0^T \sigma ^{-\left( \frac{s}{2}-1\right) \frac{\kappa }{\kappa -1}}\, d\sigma \right) ^{\kappa -1} \int _0^t |z_{\delta ,s}(\sigma )|_{H^{-s}(D)}^\kappa \,d\sigma \\&\quad \le c(T)\int _0^t |z_{\delta ,s}(\sigma )|_{H^{-s}(D)}^\kappa \,d\sigma . \end{aligned}$$

Therefore, due to (A.4) we can conclude that the following result is true.

Lemma A.4

Under Hypotheses 1 and 2, for every \(s>0\), \(\delta \in \,(0,1)\) and \(\kappa \ge 1\)we have that

$$\begin{aligned} \mathbb {E}\sup _{t \in \,[0,T]} |z_\delta (t)|^\kappa _{H^{-s}(D)}\le c_{\rho }(T){\left\{ \begin{array}{ll} \log \delta ^{-1},\ \ \ \ \text {if}\ d=2,\\ \delta ^{-(d-2)},\ \ \ \ \text {if}\ d\ge 3. \end{array}\right. }. \end{aligned}$$
(A.9)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cerrai, S., Debussche, A. Large Deviations for the Dynamic \(\Phi ^{2n}_d\) Model. Appl Math Optim 80, 81–102 (2019). https://doi.org/10.1007/s00245-017-9459-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-017-9459-4

Navigation