Skip to main content
Log in

Unstable States in a Model of Nonrelativistic Quantum Electrodynamics: Corrections to the Lorentzian Distribution

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We revisit the Lee-Friedrichs model as a model of atomic resonances in the hydrogen atom, using the dipole-moment matrix-element functions which have been exactly computed by Nussenzveig. The Hamiltonian H of the model is positive and has absolutely continuous spectrum. Although the return probability amplitude \(R_{\Psi }(t) = (\Psi , \exp (-iHt) \Psi )\) of the initial state \(\Psi \), taken as the so-called Weisskopf–Wigner (W.W.) state, cannot be computed exactly, we show that it equals the sum of an exponentially decaying term and a universal correction \(O(\beta ^{2}\frac{1}{t})\), for large positive times t and small coupling constants \(\beta \), improving on some results of King (Lett Math Phys 23:215–222, 1991). The remaining, non-universal, part of the correction is also shown to be of the same qualitative type. The method consists in approximating the matrix element of the resolvent operator operator in the W.W. state by a Lorentzian distribution. No use is made of complex energies associated to analytic continuations of the resolvent operator to ”physical” Riemann sheets. Other new results are presented, in particular a physical interpretation of the corrections, and the characterization of the so-called sojourn time \(\tau _{H}(\Psi )= \int _{0}^{\infty } |R_{\Psi }(t)|^{2} dt\) as the average lifetime of the decaying state, a standard quantity in (quantum) probability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aharonov, Y., Bohm, D.: Time in the quantum theory and the uncertainty relation for time and energy. Phys. Rev. 122, 1649 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  2. Asch, J., Bourget, O., Cortés, V., Fernandez, C.: Energy-time uncertainty principle and lower bounds on sojourn time. Ann. Henri Poincaré 17, 2513 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  3. Barut, A.O.: Quantum Electrodynamics and Quantum Optics, pp. 341-371, article by Nussenzveig in proceedings of NATO ASI series B: physics vol. 110 with title Nonperturbative theory of decaying states. Plenum Press, New York (1984)

  4. Blanchard, P., Brüning, E.: Mathematical Methods in Physics-Distributions. Hilbert-Space Operators and Variational Methods. Birkhäuser (2003)

  5. Benguria, R.D., Duclos, P., Fernandez, C., Sing-Long, C.: A nonlinear ordinary differential equation associated with the quantum sojourn time. J. Phys. A 43, 474007 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  6. Brunetti, R., Fredenhagen, K.: Remarks on time-energy uncertainty relation. Rev. Math. Phys. 14, 897–906 (2002)

    Article  MathSciNet  Google Scholar 

  7. Bach, V., Fröhlich, J., Sigal, I.: Return to equilibrium. J. Math. Phys. 41, 3985–4060 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  8. Brenig, W., Haag, R.: Allgemeine Quantentheorie der Stossprozesse. Fort. der Physik 7, 183–242 (1959)

    Article  MathSciNet  ADS  Google Scholar 

  9. Busch, P.: The time-energy uncertainty relation. In: SalaMayato, R., Muga, J.G., Egusquiza, I.L. (eds.) Time and Quantum Mechanics. Springer, New York (2002)

    MATH  Google Scholar 

  10. Davidovich, L.: On the Weisskopf Wigner approximation in atomic physics. Ph.D. thesis University of Rochester (1975)

  11. DeRose, E., Gislason, E.A., Sabelli, N.H.: A new method for computing properties of negative ion resonances. J. Chem. Phys. 82, 4577 (1985)

    Article  ADS  Google Scholar 

  12. Davidovich, L., Nussenzveig, H.M.: Theory of natural line shape. In: Barut, A.O. (ed.) Foundations of Radiation Theory and Quantum Electrodynamics. Plenum Press, New York (1980)

    Google Scholar 

  13. Fonda, L., Ghirardi, G.C., Rimini, A.: Decay theory of unstable quantum systems. Rep. Progr. Phys. 41, 587–631 (1978)

    Article  ADS  Google Scholar 

  14. Friedrichs, K.: Perturbation of Spectra in Hilbert Space. American Mathematical Society, Providence (1965)

    MATH  Google Scholar 

  15. Gamow, G.: Zur Quantentheorie des Atomkernes. Z. Phys. 51, 204 (1928)

    Article  ADS  Google Scholar 

  16. Gustafson, S., Sigal, I.M.: Mathematical Concepts in Quantum Mechanics. Springer, New York (2006)

    MATH  Google Scholar 

  17. Gislason, E.A., Sabelli, N.H., Wood, J.W.: New form of the time energy uncertainty relation. Phys. Rev. A 31, 2078 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  18. Howland, J.S.: The Livsic matrix in perturbation theory. J. Math. Anal. Appl. 50, 415–437 (1975)

    Article  MathSciNet  Google Scholar 

  19. Jaksic, Vojkan: Topics in spectral theory. Lect. Notes Math. 235–312, 2006 (1880)

    Google Scholar 

  20. Katznelson, Y.: An Introduction to Harmonic Analysis. Dover Publ. Inc., New York (1976)

    MATH  Google Scholar 

  21. King, C.: Exponential decay near resonance without analyticity. Lett. Math. Phys. 23, 215–222 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  22. Lavine, R.: Spectral density and sojourn times. In: Nuttall, J. (ed.) Atomic Scattering Theory. University of Western Ontario, London (1978)

    Google Scholar 

  23. Lee, T.D.: Some special examples in renormalizable field theory. Phys. Rev. 95, 1329 (1954)

    Article  MathSciNet  ADS  Google Scholar 

  24. Martin, PhA, Rothen, F.: Many Body Problems and Quantum Field Theory—An Introduction. Springer, New York (2004)

    Book  Google Scholar 

  25. Marchetti, D.H.U., Wreszinski, W.F.: Asymptotic Time Decay in Quantum Physics. World Scientific, Singapore (2013)

    Book  Google Scholar 

  26. Peierls, R.: Surprises in Theoretical Physics. Princeton University Press, Princeton (1979)

    Google Scholar 

  27. Pfeifer, P., Fröhlich, J.: Generalized time-energy uncertainty relations and bounds on lifetimes of resonances. Rev. Mod. Phys. 67, 759 (1995)

    Article  ADS  Google Scholar 

  28. Reed, M., Simon, B.: Methods in Modern Mathematical Physics-vol. 1, Functional Analysis, 1st ed. Academic Press, New York (1972)

  29. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, Scattering Theory, vol. 3. Academic Press, New York (1978)

    MATH  Google Scholar 

  30. Sakurai, J.J.: Advanced Quantum Mechanics. Addison Wesley Publishing Co, Reading (1967)

    Google Scholar 

  31. Sewell, G.L.: Quantum Theory of Collective Phenomena. Oxford University Press, Oxford (1986)

    Google Scholar 

  32. Sewell, G.L.: Quantum Mechanics and Its Emergent Macrophysics. Princeton University Press, Princeton (2002)

    Book  Google Scholar 

  33. Sinha, K.B.: On the decay of an unstable particle. Helv. Phys. Acta 45, 619 (1972)

    MathSciNet  Google Scholar 

  34. Sinha, K.B.: On the absolutely and singularly continuous subspaces in scattering theory. Ann. Inst. Henri Poincaré 26, 263–277 (1977)

    MathSciNet  Google Scholar 

  35. Thomson, J.J.: On electrical oscillations and the effects produced by the motion of an electrified sphere. Proc. Lond. Math. Soc. 15, 197 (1883)

    Article  MathSciNet  Google Scholar 

  36. Weisskopf, V.: Physics in the Twentieth Century. The MIT Press, Cambridge, MA (1974)

    Google Scholar 

  37. Wightman, A.S.: Introduction to some aspects of quantized fields. In: Lévy, M. (ed.) High Energy Electromagnetic Interactions and Field Theory. Gordon and Breach, New York (1967)

    Google Scholar 

  38. Williams, D.N.: Difficulties with a kinematic concept of unstable particles. Commun. Math. Phys. 21, 314–333 (1971)

    Article  ADS  Google Scholar 

  39. Wreszinski, W .F.: Irreversibility, the time arrow and a dynamical proof of the second law of thermodynamics. Quant. Stud. Math. Found. 7, 125 (2020)

    Article  MathSciNet  Google Scholar 

  40. Wreszinski, W.F.: One or two small points in thermodynamics. arXiv:2003.03800, to appear in Rev. Bras. Ens. Fisica

  41. Weisskopf, V., Wigner, E.P.: Beachtung der natuerlichen Linienbreite auf Grund der Diracschen Theorie. Zeitschrift fuer Physik 63, 54 (1930)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We should like to thank the first referee for his encouraging remarks and corrections. We are also deeply indebted to the second one for important remarks and corrections, as well as a very thorough reading of the painful details of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter F. Wreszinski.

Additional information

Communicated by Michael Kiessling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Completion of the Proof of Theorem 2.1

Appendix A: Completion of the Proof of Theorem 2.1

In this appendix we prove that (74) of Theorem 2.1 holds. Together with (71), this proves (70), and thereby completes the proof of Theorem 2.1.

We first write (72) as the limit, as \(\delta \downarrow 0\), of the corresponding integral from \(\delta >0\) to \(\infty \). By integration by parts on the latter, we find

$$\begin{aligned}&D_{L}^{1}(t) = \lim _{\delta \downarrow 0}\left[ -\frac{w(\delta )}{it\alpha (\delta )\beta (\delta )}\right. \nonumber \\&\quad \left. + \frac{\int _{\delta }^{\infty }d\lambda \exp (-it\lambda )\frac{d}{d\lambda }(\frac{w(\lambda )}{\alpha (\lambda )\beta (\lambda )})}{it}\right] \end{aligned}$$
(A.1)

where, for \(\lambda >0\), \(\alpha (\lambda )\) and \(\beta (\lambda )\) are given by (51) and (73) of the main text, but we repeat them here for clarity:

$$\begin{aligned} \alpha (\lambda ) \equiv E_{0}-\lambda -\beta ^{2}F(\lambda )-i\pi \beta ^{2}G(\lambda ) \end{aligned}$$
(A.2)

and

$$\begin{aligned} \beta (\lambda ) \equiv \kappa (\lambda -\lambda _{0})-i\pi \beta ^{2}G(\lambda _{0}) \end{aligned}$$
(A.3)

We have, the prime denoting, as usual, the first derivative,

$$\begin{aligned} \alpha ^{'}(\lambda ) = -1-\beta ^{2}F^{'}(\lambda )-i\pi \beta ^{2}G^{'}(\lambda ) \end{aligned}$$
(A.4)

and

$$\begin{aligned} \beta ^{'}(\lambda ) = \kappa \end{aligned}$$
(A.5)

From (52),

$$\begin{aligned}&w^{'}(\lambda )=-\beta ^{2}(F^{'}(\lambda )-F^{'}(\lambda _{0}))-i\pi \beta ^{2}(G^{'}(\lambda )-G^{'}(\lambda _{0})) \end{aligned}$$
(A.6)
$$\begin{aligned}&\frac{d}{d\lambda }\left( \frac{w(\lambda )}{\alpha (\lambda )\beta (\lambda )}\right) \nonumber \\&\quad = \frac{w^{'}(\lambda )}{\alpha (\lambda )\beta (\lambda )} - \frac{w(\lambda )\alpha ^{'}(\lambda )}{\alpha (\lambda )^{2}\beta (\lambda )} \nonumber \\&\quad \quad - \frac{w(\lambda )\beta ^{'}(\lambda )}{\alpha (\lambda )\beta (\lambda )^{2}} \end{aligned}$$
(A.7)

From (21), (22), (36) and (37) we have

$$\begin{aligned}&G(\lambda ) = \lambda (\lambda ^{2}+a^{2})^{-4} \text{ for } \lambda \ge 0 \end{aligned}$$
(A.8.1)
$$\begin{aligned}&G^{'}(\lambda ) = (\lambda ^{2}+a^{2})^{-4}-8\lambda ^{2}(\lambda ^{2}+a^{2})^{-5} \end{aligned}$$
(A.8.2)

When writing f(0) in the following, for some function f, it will be meant the limit \(\lim _{\delta \downarrow 0} f(\delta )\). The finiteneness of the resulting limits, for all the functions which follow, will result from (38), which will be proved later as part of the forthcoming property b.) of the function F. We have, then:

$$\begin{aligned}&F(0) = \int _{0}^{\infty }(k^{2}+a^{2})^{-4}dk \end{aligned}$$
(A.8.3)
$$\begin{aligned}&G(0) = 0 \end{aligned}$$
(A.8.4)
$$\begin{aligned}&w(0)= -\beta ^{2}[F(0)-F(\lambda _{0})+\lambda _{0}F^{'}(\lambda _{0})]-i\pi \beta ^{2}\lambda _{0}G^{'}(\lambda _{0}) \end{aligned}$$
(A.8.5)
$$\begin{aligned}&\alpha (0) = E_{0}-\beta ^{2}F(0) \end{aligned}$$
(A.8.6)
$$\begin{aligned}&\beta (0) = -\kappa \lambda _{0}-i\pi \beta ^{2}G(\lambda _{0}) \end{aligned}$$
(A.8.7)

The first term in (A.1) satisfies, in the limit \(\delta \downarrow 0\), the bound on the r.h.s. of (75), by (A.8.5), (A.8.6) and (A.8.7). Therefore, by (A.1) and (A.7), in order to conclude the proof of (74), we need only prove that

$$\begin{aligned}&\left| \int _{0}^{\infty } \frac{\alpha ^{'}(\lambda )}{\alpha (\lambda )^{2}\beta (\lambda )} w(\lambda ) d\lambda \right| <\infty \end{aligned}$$
(A.9.1)
$$\begin{aligned}&\left| \int _{0}^{\infty } \frac{\beta ^{'}(\lambda )}{\alpha (\lambda )\beta (\lambda )^{2}} w(\lambda ) d\lambda \right| <\infty \end{aligned}$$
(A.9.2)
$$\begin{aligned}&\left| \int _{0}^{\infty } \frac{1}{\alpha (\lambda )\beta (\lambda )} w^{'}(\lambda ) d\lambda \right| <\infty \end{aligned}$$
(A.9.3)

It follows from (A.2), (A.3), (A.4), (A.5), (A.8.1) and (A.8.2) and (52) that (A.9.1)–(A.9.3) hold if the two following assertions are true:

(a):

For \(\lambda \) sufficiently large, \(F(\lambda )\) and \(F^{'}(\lambda )\) are uniformly bounded in \(\lambda \);

(b):

For \(\lambda \) in a sufficiently small right-neighbourhood of zero, \(F(\lambda )\) is uniformly bounded, (38) holds and

$$\begin{aligned} F^{'}(\lambda ) = -\log \lambda + D \end{aligned}$$

where \(0<D<\infty \) is independent of \(\lambda \).

Indeed, b.) implies that \(\alpha ^{'}\), as well as \(w^{'}\), are integrable in a neighbourhood of zero, which suffice to prove integrability of \(\frac{\alpha ^{'}(\lambda )}{\alpha (\lambda )^{2}\beta (\lambda )} w(\lambda )\) and of \(\frac{1}{\alpha (\lambda )\beta (\lambda )}w^{'}(\lambda )\), in a neighbourhood of zero, which are elements in the proof of (A.9.1) and (A.9.3). Convergence at infinity of the integrals on the left hand sides of (A.9.1)–(A.9.3) is an immediate consequence of the explicit formulae for \(\alpha \), \(\beta \) and w, together with a.).

In order to prove a.) and b.), we come back to (37), whereby, for any \(\lambda >0\),

$$\begin{aligned} F(\lambda ) = \lim _{r\rightarrow 0}\int _{|k-\lambda |\ge r} \frac{G(k)}{k-\lambda }dk \end{aligned}$$

We write

$$\begin{aligned}&\int _{|k-\lambda |\ge r} \frac{G(k)}{k-\lambda } \\&\quad =\int _{0}^{\lambda -r} \frac{G(k)}{k-\lambda }dk + \int _{\lambda +r}^{2\lambda } \frac{G(k)}{k-\lambda }\\&\quad \quad +\int _{2\lambda }^{\infty } \frac{G(k)}{k-\lambda }dk \end{aligned}$$

but

$$\begin{aligned}&\int _{0}^{\lambda -r} \frac{G(k)}{k-\lambda }dk + \int _{\lambda +r}^{2\lambda } \frac{G(k)}{k-\lambda } \\&\quad = \int _{r}^{\lambda } \frac{1}{k}[G(k+\lambda )-G(k-\lambda )]dk \end{aligned}$$

Write

$$\begin{aligned} G(k+\lambda )-G(k-\lambda ) = k\int _{-1}^{1}dt G^{'}(\lambda +kt) \end{aligned}$$

Thus,

$$\begin{aligned}&F(\lambda ) = \int _{0}^{\lambda }dk\int _{-1}^{1}dt\{[(\lambda +kt)^{2}+a^{2}]^{-4}\nonumber \\&\quad -8(\lambda +kt)^{2}[(\lambda +kt)^{2}+a^{2}]^{-5}\}\nonumber \\&\quad + \int _{2\lambda }^{\infty } \frac{G(k)}{k-\lambda }dk \end{aligned}$$
(A.9.4)

We write

$$\begin{aligned}&F(\lambda ) = -7\int _{0}^{\lambda }dk\int _{-1}^{1}dt[(\lambda +kt)^{2}+a^{2}]^{-4}\\&\quad +8a^{2} \int _{0}^{\lambda }dk\int _{-1}^{1}dt [(\lambda +kt)^{2}+a^{2}]^{-5}\\&\quad + \int _{2\lambda }^{\infty } \frac{G(k)}{k-\lambda }dk \end{aligned}$$

from which

$$\begin{aligned}&F^{'}(\lambda ) = -7\int _{-1}^{1}dt[\lambda ^{2}(1+t)^{2}+a^{2}]^{-4} \nonumber \\&\quad + 8a^{2} \int _{-1}^{1} dt [\lambda ^{2}(1+t)^{2}+a^{2}]^{-5}\nonumber \\&\quad + 28 \int _{0}^{\lambda }dk\int _{-1}^{1} [(\lambda +kt)^{2}+a^{2}]^{-5}2(\lambda +kt)\nonumber \\&\quad -40a^{2} \int _{0}^{\lambda }dk\int _{-1}^{1}dt [(\lambda +kt)^{2}+a^{2}]^{-6}2(\lambda +kt)\nonumber \\&\quad -2 \int _{2\lambda }^{\infty } \frac{G(k)}{k-\lambda }dk - \int _{2\lambda }^{\infty } \frac{G(k)}{(k-\lambda )^{2}}dk \end{aligned}$$
(A.9.5)

By (A.9.4), we obtain directly a.) for \(F(\lambda )\), as well as the statements in b.) which concern \(F(\lambda )\). Statement b.) for \(F^{'}(\lambda )\) follows from (A.8.1) and the last term in (A.9.5). Statement a.) for \(F^{'}(\lambda )\) is not entirely obvious from (A.9.5), but we use

$$\begin{aligned} b(\lambda +kt) \le (\lambda +kt)^{2} +a^{2} \end{aligned}$$

which is true for b sufficiently small, to bound the third and fourth terms in (A.9.5) in absolute value by

$$\begin{aligned} \text{ const. } \int _{0}^{\lambda } dk((\lambda -k)^{2}+a^{2})^{-4} \text{ resp. } \text{ const. } \int _{0}^{\lambda }dk ((\lambda -k)^{2}+a^{2})^{-5} \end{aligned}$$

which are trivially seen to be uniformly bounded in \(\lambda \) by a change of variable. This completes the proof of (74). q.e.d.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wreszinski, W.F. Unstable States in a Model of Nonrelativistic Quantum Electrodynamics: Corrections to the Lorentzian Distribution. J Stat Phys 182, 26 (2021). https://doi.org/10.1007/s10955-021-02706-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-021-02706-4

Navigation