Skip to main content
Log in

Ionization by an Oscillating Field: Resonances and Photons

To the memory of Pierre Hohenberg

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We describe new exact results for a model of ionization of a bound state in a 1d delta function potential, induced by periodic oscillations of the potential of period \(2\pi /\omega \). In particular we have obtained exact expressions, in the form of Borel summed transseries for the energy distribution of the emitted particle as a function of time, \(\omega \) and strength \(\alpha \) of the oscillation of the potential. These show peaks in the energy distribution, separated by \(\hbar \omega \), which look like single or multi-photon absorption. The peaks are very sharp when the time is large and the strength of the oscillating potential is small but are still clearly visible for large fields, and even for time-periods of a few oscillations. These features are similar to those observed in laser induced electron emission from solids or atoms (Phys Rev Lett 105:257601, 2010). For large \(\alpha \) the model exhibits peak-suppression. The ionization probability is not monotone in the strength of the oscillating potential: there are windows of much slower ionization at special pairs \((\alpha ,\omega )\). This shows that ionization processes by time-periodic fields exhibit universal features whose mathematical origin are resonances which pump energy into the system represented by singularities in the complex energy plane. All these features are proven in our simple model system without the use of any approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schenk, M.: Krüger M and Hommelhoff P Strong-field above-threshold photoemission from sharp metal tips. Phys. Rev. Lett. 105, 257601 (2010)

    Article  ADS  Google Scholar 

  2. Delone, N.B., Krainov, V.P.: Multiphoton Processes in Atoms. Springer, Berlin Heidelberg, New York (1994)

    Book  Google Scholar 

  3. Krug, A., Buchleitner, A.: Microwave ionization of alkali-metal Rydberg states in a realistic numerical experiment. Phys. Rev. A 66, 053416 (2002)

    Article  ADS  Google Scholar 

  4. Bauer, D.: Theory of Intense Laser-Matter Interaction. Max-Planck-Institut für Kernphysik, Heidelberg (2006)

    Google Scholar 

  5. Fröhlich, J., Pizzo, A., Schlein, B.: Ionization of atoms by intense laser pulses. Ann. Henri Poincaré 11(7), 1375–1407 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Soffer, A., Weinstein, M.: Time dependent resonance theory. Geom. Funct. Anal. 8, 1086–1128 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Popruzhenko, S.V.: Keldysh theory of strong field ionization: history, applications, difficulties and perspectives. J. Phys. B 47(20), 204001 (2014)

    Article  ADS  Google Scholar 

  8. Protopapas, M.: Atomic physics with super-high intensity lasers. Rep. Prog. Phys. 60, 389 (1997)

    Article  ADS  Google Scholar 

  9. Costin, O., Soffer, A.: Resonance theory for Schrödinger operators. Commun. Math. Phys. 224, 133–152 (2001)

    Article  ADS  MATH  Google Scholar 

  10. Fried, Z., Eberly, J.H.: Scattering of a high-intensity, low-frequency electromagnetic wave by an unbound electron. Phys. Rev. 136, 871 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  11. Moore, C.I., Knauer, J.P., Meyerhofer, D.D.: Observation of the transition from thomson to compton scattering in multiphoton interactions with low-energy electrons. Phys. Rev. Lett. 74, 2439 (1995)

    Article  ADS  Google Scholar 

  12. Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, G.: Photons and Atoms. Introduction to quantum electrodynamics. Wiley, New York (1997)

    Google Scholar 

  13. Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, G.: Atom-Photon Interactions. Wiley, NewYork (1992)

    Google Scholar 

  14. Guérin, S., Monti, F., Dupont, J.-M., Jauslin, H.R.: On the relation between cavity-dressed states, Floquet states, RWA and semiclassical models. J. Phys. A 30(20), 7193 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Spohn, H.: Dynamics of Charged Particles and their Radiation Field. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  16. Frolov, M.V., Manakov, N.L., Starance, A.F.: Analytic formulas for above threshold ionization or detachment plateau spectra. Phys. Rev. 79(3), 033406 (2009)

    Article  Google Scholar 

  17. Costin, O., Lebowitz, J.L., Rokhlenko, A.: Exact results for the ionization of a model quantum system. J. Phys. A 33, 1–9 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Costin, O., Costin, R D., Lebowitz, J L.: Nonperturbative time dependent solution of a simple ionization model. Comm. Math. Phys. https://doi.org/10.1007/s00220-018-3105-0, arXiv:1706.07129

  19. Elberfeld, W., Kleber, M.: Tunneling from an ultrathin quantum well in a strong electrostatic field: a comparison of different methods. J. Phys. B 73, 23–32 (1988)

    ADS  Google Scholar 

  20. Becker, W., Long, S., McIver, J.K.: Modeling harmonic generation by a zero-range potential. Phys. Rev. A 50, 1540 (1994)

    Article  ADS  Google Scholar 

  21. Susskind, S.M., Cowley, S.C., Valeo, E.J.: Multiphoton ionization in a short range potential: a nonperturbative approach. Phys. Rev. A 42, 3090 (1990)

    Article  ADS  Google Scholar 

  22. Eberly, J.H., Kulander, K.C.: Atomic stabilization by super-intense lasers. Science 262, 1229 (1993)

    Article  ADS  Google Scholar 

  23. Costin, O., Huang, M.: Gamow vectors and Borel summability in a class of quantum systems. J. Stat. Phys. 144(4), 846?871 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Huang, M.: Gamow vectors in a periodically perturbed quantum system. J. Stat. Phys. 137(3), 569?592 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kramer, B., Schön, G., Ingold, G.-L., H\(\ddot{n}\)ggi, P., Dittrich, T., Zwerger, W.: Quantum Transport and Dissipation. Wiley, New York (1998)

  26. Costin, O., Costin, R D., Jauslin, H., Jauslin, I., Lebowitz, J L.: in preparation

Download references

Acknowledgements

We are grateful to the reviewers for bringing to our attention interesting references.

OC was partially supported by the NSF-DMS Grant 1515755 and JLL by the AFOSR Grant FA9550-16-1-0037. We thank H. Jauslin, H. Spohn and particularly L. DiMauro, C. Blaga and David Huse for very useful discussions. JLL thanks the Systems Biology division of the Institute for Advanced Study for hospitality during part of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ovidiu Costin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costin, O., Costin, R.D. & Lebowitz, J.L. Ionization by an Oscillating Field: Resonances and Photons. J Stat Phys 175, 681–689 (2019). https://doi.org/10.1007/s10955-018-2141-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-018-2141-7

Keywords

Navigation