Skip to main content
Log in

Surface Tension and \(\varGamma \)-Convergence of Van der Waals–Cahn–Hilliard Phase Transitions in Stationary Ergodic Media

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the large scale equilibrium behavior of Van der Waals–Cahn–Hilliard phase transitions in stationary ergodic media. Specifically, we are interested in free energy functionals of the following form

$$\begin{aligned} \mathcal {F}^{\omega }(u) = \int _{\mathbb {R}^{d}} \left( \frac{1}{2} \varphi ^{\omega }(x,Du(x))^{2} + W(u(x)) \right) \, dx, \end{aligned}$$

where W is a double-well potential and \(\varphi ^{\omega }(x,\cdot )\) is a stationary ergodic Finsler metric. We show that, at large scales, the random energy \(\mathcal {F}^{\omega }\) can be approximated by the anisotropic perimeter associated with a deterministic Finsler norm \(\tilde{\varphi }\). To find \(\tilde{\varphi }\), we build on existing work of Alberti, Bellettini, and Presutti, showing, in particular, that there is a natural sub-additive quantity in this context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberti, G.: Variational models for phase transitions, an approach via \(\Gamma \)-convergence. In: Buttazo, G., Marino, A., Murthy, M.K.V. (eds.) Calculus of Variations and Partial Differential Equations: Topics on Geometrical Evolution Problems and Degree Theory, pp. 95–114. Springer, Berlin (1991)

    Google Scholar 

  2. Alberti, G., Bellettini, G.: A non-local anisotropic model for phase transitions: asymptotic behavior of rescaled energies. Eur. J. Appl. Math. 9, 261–284 (1998)

    Article  Google Scholar 

  3. Alicandro, R., Cicalese, M., Ruf, M.: Domain formation in magnetic polymer composites: an approach via stochastic homogenization. Arch. Ration. Mech. Anal. 218, 945–984 (2015)

    Article  MathSciNet  Google Scholar 

  4. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1085–1095 (1979)

    Article  Google Scholar 

  5. Ansini, N., Braides, A., Chiadò Piat, V.: Gradient theory of phase transitions in composite media. Proc. R. Soc. Edind. 133A, 265–296 (2003)

    Article  MathSciNet  Google Scholar 

  6. Barles, G., Souganidis, P.E.: A new approach to front propagation: theory and applications. Arch. Ration. Mech. Anal. 141, 237–296 (1998)

    Article  MathSciNet  Google Scholar 

  7. Braides, A.: Approximation of Free-Discontinuity Problems. Springer, Berlin (1998)

    Book  Google Scholar 

  8. Braides, A.: \(\Gamma \)-Convergence for Beginners. Oxford University Press, New York (2002)

    Book  Google Scholar 

  9. Caffarelli, L., de la Llave, R.: Planelike minimizers in periodic media. Commun. Pure Appl. Math. 54, 1403–1441 (2001)

    Article  MathSciNet  Google Scholar 

  10. Cagnetti, F., Dal Maso, G., Scardia, L., Zeppieri, C.: Stochastic homogenization of free-discontinuity problems. Arch. Ration. Mech. Anal. 233, 1–40 (2019)

    Article  MathSciNet  Google Scholar 

  11. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28(258), 258–267 (1958)

    Article  ADS  Google Scholar 

  12. Dal Maso, G.: An Introduction to \(\Gamma \)-Convergence. Birkhäuser, Boston (1993)

    Book  Google Scholar 

  13. Dal Maso, G., Modica, L.: Nonlinear stochastic homogenization and ergodic theory. J. Reine Angew. Math. 368, 28–42 (1986)

    MathSciNet  MATH  Google Scholar 

  14. De Masi, A., Orlandi, E., Presutti, E., Triolo, L.: Motion by curvature by scaling nonlocal evolution equations. J. Stat. Phys. 73–3(4), 543–570 (1993)

    Article  MathSciNet  Google Scholar 

  15. Dirr, N., Orlandi, E.: Sharp-interface limit of a Ginzburg–Landau functional with a random external field. SIAM J. Math. Anal. 41(2), 781–824 (2009)

    Article  MathSciNet  Google Scholar 

  16. Emmerich, H.: The Diffuse Interface Approach in Materials Science: Thermodynamic Concepts and Applications of Phase-Field Models. Springer, Berlin (2003)

    MATH  Google Scholar 

  17. Fife, P., McLeod, J.: The approach of solutions of nonlinear diffusion equations to traveling front solutions. Arch. Ration. Mech. Anal. 65(4), 335–361 (1977)

    Article  Google Scholar 

  18. Gold, J.: Isoperimetry in supercritical bond percolation in dimensions three and higher. Ann. Inst. H. Poincaré Probab. Statist. 54–4, 2092–2158 (2018)

    Article  MathSciNet  Google Scholar 

  19. Krengel, U.: Ergodic Theorems. Walter de Gruyter, Berlin (2011)

    MATH  Google Scholar 

  20. Langer, J.S.: An introduction to the kinetics of first-order phase transition. In: Godréche, C. (ed.) Solids Far From Equilibrium, pp. 297–362. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  21. de la Llave, R., Valdinoci, E.: Multiplicity results for interfaces of Ginzburg–Landau–Allen–Cahn equations in periodic media. Adv. Math. 215(1), 379–426 (2007)

    Article  MathSciNet  Google Scholar 

  22. Messager, A., Miracle-Solè, S., Ruiz, J.: Convexity properties of the surface tension and equilibrium crystals. J. Stat. Phys. 67, 449–470 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  23. Modica, L.: The gradient theory of phase transitions and the minimal interface criterion. Arch. Ration. Mech. Anal. 98, 123–142 (1987)

    Article  MathSciNet  Google Scholar 

  24. Modica, L., Mortola, S.: Un esempio di \(\Gamma \)-convergenza. Boll. Un. Mat. Ital. 14–B, 285–299 (1977)

    MathSciNet  MATH  Google Scholar 

  25. Presutti, E.: Scaling Limits in Statistical Mechanics and Microstructures in Continuum Mechanics. Springer, Berlin (2009)

    MATH  Google Scholar 

  26. Valdinoci, E.: Plane-like minimizers in periodic media: jet flows and Ginzburg–Landau-type functionals. J. Reine Angew. Math. 574, 147–186 (2004)

    MathSciNet  MATH  Google Scholar 

  27. Van der Waals, J.D.: The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density. J. Stat. Phys. 20(2), 197–200 (1979)

    Article  Google Scholar 

  28. Widom, B.: Surface tension of fluids. In: Domb, C., Green, M.S. (eds.) Phase Transitions and Critical Phenomena, vol. 2, pp. 79–99. Academic Press, New York (1972)

    Google Scholar 

  29. Wouts, M.: Surface tension in the dilute Ising model: Wulff construction. Commun. Math. Phys. 289(1), 157–204 (2009)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is grateful to P.E. Souganidis for introducing him to this subject and suggesting he revisit some related open problems. Additionally, he thanks Y. Bakhtin, N. Dirr, and the anonymous reviewer for helpful suggestions and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter S. Morfe.

Additional information

Communicated by Eric A. Carlen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author was partially supported by the NSF RTG Grant DMS-1246999.

Appendices

Appendix A: The Fundamental Estimate of \(\varGamma \)-Convergence

We state and prove the version of the fundamental estimate of \(\varGamma \)-convergence used throughout the paper. For problems of this type, the fundamental estimate was originally established in [5].

Theorem 6

Assume that the families \((u_{\epsilon })_{\epsilon> 0}, (v_{\epsilon })_{\epsilon > 0} \subseteq H^{1}_{\text {loc}}(\mathbb {R}^{d}; [-1,1])\) and bounded open sets \((U_{\epsilon })_{\epsilon> 0}, (V_{\epsilon })_{\epsilon > 0}, U' \subseteq \mathbb {R}^{d}\) satisfy the following conditions:

  1. (i)

    \(C_{0} := \sup \left\{ \mathcal {F}^{\omega }_{\epsilon }(u_{\epsilon }; U') + \mathcal {F}^{\omega }_{\epsilon }(v_{\epsilon }; V_{\epsilon }) \, \mid \, \epsilon > 0\right\} < \infty \)

  2. (ii)

    \(U_{\epsilon } \subseteq U\) and \(V_{\epsilon } \subseteq V\) for all \(\epsilon > 0\), and

    $$\begin{aligned} D&:= \inf \left\{ \text {dist}(U_{\epsilon },\partial U') \, \mid \, \epsilon> 0\right\}> 0 \\ R&:= \sup \left\{ \text {diam}(V_{\epsilon }) \, \mid \, \epsilon > 0\right\} < \infty . \end{aligned}$$
  3. (iii)

    There is a \(v \in L^{1}_{\text {loc}}(\mathbb {R}^{d}; \{-1,1\})\) such that \(\lim _{\epsilon \rightarrow 0^{+}} \Vert v_{\epsilon } - v\Vert _{L^{1}(V_{\epsilon })} = 0\).

If there is a measurable set \(E \subseteq \mathbb {R}^{d}\) such that \(\mathcal {L}^{d}(E) \le \zeta \) and \(\Vert u_{\epsilon } - v_{\epsilon }\Vert _{L^{1}(V_{\epsilon } \setminus E)} \rightarrow 0\) as \(\epsilon \rightarrow 0^{+}\), then there is a constant \(C > 0\) depending only on D, \(\lambda \), \(\varLambda \), and W and a family of cut-off functions \((\psi _{\epsilon })_{\epsilon > 0} \subseteq C^{\infty }_{c}(U';[0,1])\) satisfying \(\psi _{\epsilon } \equiv 1\) on \(U_{\epsilon }\) such that

$$\begin{aligned} \mathcal {F}^{\omega }_{\epsilon }(\psi _{\epsilon } u_{\epsilon } + (1 - \psi _{\epsilon }) v_{\epsilon }; U_{\epsilon } \cup V_{\epsilon }) \le \mathcal {F}^{\omega }_{\epsilon }(u_{\epsilon }; U') + \mathcal {F}^{\omega }_{\epsilon }(v_{\epsilon }; V_{\epsilon }) + C \zeta + o(1). \end{aligned}$$

We remark that we sometimes apply the fundamental estimate with \(\epsilon \)-independent open sets U, \(U'\), and V.

Proof

Fix \(\epsilon > 0\). Let \(N_{\epsilon } = \lceil \epsilon ^{-1} \rceil \) and pick open sets \(U_{1}^{\epsilon },U_{2}^{\epsilon },\dots ,U_{N_{\epsilon }}^{\epsilon }\) such that

  1. (1)

    \(U_{1}^{\epsilon } \Subset U_{2}^{\epsilon } \Subset \dots \Subset U_{N_{\epsilon }}^{\epsilon }\)

  2. (2)

    \(U_{1}^{\epsilon } = U_{\epsilon }\) and \(U_{N_{\epsilon }}^{\epsilon } = U'\)

  3. (3)

    \(\text {dist}(U_{i}^{\epsilon }, \partial U_{i + 1}^{\epsilon }) \ge \frac{D}{N_{\epsilon }}\) for each \(i \in \{1,2,\dots ,N_{\epsilon } - 1\}\).

For each \(i \in \{1,2,\dots ,N_{\epsilon } - 1\}\), pick \(\psi _{i} \in C^{\infty }_{c}(U_{i + 1}^{\epsilon };[0,1])\) such that \(\psi ^{\epsilon }_{i} \equiv 1\) in \(U_{i}^{\epsilon }\) and

$$\begin{aligned} \Vert D\psi _{i}\Vert _{L^{\infty }(U_{i + 1}^{\epsilon })} \le \frac{2 N_{\epsilon }}{D}. \end{aligned}$$

For convenience, write \(w^{\epsilon }_{i} = \psi ^{\epsilon }_{i} u_{\epsilon } + (1 - \psi ^{\epsilon }_{i})v_{\epsilon }\).

For a fixed i, we can write

$$\begin{aligned} \mathcal {F}^{\omega }_{\epsilon }(w_{i}^{\epsilon }; U_{\epsilon } \cup V_{\epsilon })&\le \mathcal {F}^{\omega }_{\epsilon }(u_{\epsilon }; U') + \mathcal {F}^{\omega }_{\epsilon }(v_{\epsilon }; V_{\epsilon }) + \mathcal {F}^{\omega }_{\epsilon }(w^{\epsilon }_{i}; (U_{i + 1}^{\epsilon } \setminus U_{i}^{\epsilon }) \cap V_{\epsilon }). \end{aligned}$$

Appealing to the definitions, we estimate the error term as

$$\begin{aligned} \mathcal {F}^{\omega }_{\epsilon }(w^{\epsilon }_{i}; (U_{i + 1}^{\epsilon } \setminus U_{i}^{\epsilon }) \cap V_{\epsilon }) \le e_{1}(i,\epsilon ) + e_{2}(i,\epsilon ) + e_{3}(i,\epsilon ) \end{aligned}$$

where

$$\begin{aligned} e_{1}(i,\epsilon )&= \epsilon \varLambda \int _{(U_{i + 1}^{\epsilon } \setminus U_{i}^{\epsilon }) \cap V_{\epsilon }} \left( |Du_{\epsilon }(x)|^{2} + |Dv_{\epsilon }(x)|^{2}\right) \, dx \\ e_{2}(i,\epsilon )&= \epsilon ^{-1} \int _{(U_{i + 1}^{\epsilon } \setminus U_{i}^{\epsilon }) \cap V_{\epsilon }} W(w^{\epsilon }_{i}(x)) \, dx \\ e_{3}(i,\epsilon )&= \epsilon \varLambda \left( \frac{2 N_{\epsilon }}{D} \right) ^{2} \int _{(U_{i + 1}^{\epsilon } \setminus U_{i}^{\epsilon }) \cap V_{\epsilon }} (u_{\epsilon }(x) - v_{\epsilon }(x))^{2} \, dx. \end{aligned}$$

Summing over i, we find

$$\begin{aligned} \sum _{i = 1}^{N_{\epsilon } - 1} \mathcal {F}^{\omega }_{\epsilon }(w^{\epsilon }_{i}; (U_{i + 1}^{\epsilon } \setminus U_{i}^{\epsilon }) \cap V_{\epsilon })&\le \frac{\varLambda }{\lambda } C_{0} + \epsilon \varLambda \left( \frac{2 N_{\epsilon }}{D} \right) ^{2} \int _{U' \cap V_{\epsilon }} (u_{\epsilon }(x) - v_{\epsilon }(x))^{2} \ dx \\&\quad + \epsilon ^{-1} \sum _{i = 1}^{N_{\epsilon } - 1} \int _{(U_{i + 1}^{\epsilon } \setminus U_{i}^{\epsilon }) \cap V_{\epsilon }} W(w_{i}^{\epsilon }(x)) \, dx. \end{aligned}$$

Thus, there is a \(j_{\epsilon } \in \{1,2,\dots ,N_{\epsilon } - 1\}\) such that

$$\begin{aligned} \mathcal {F}^{\omega }_{\epsilon }(w^{\epsilon }_{j_{\epsilon }}; (U_{j_{\epsilon } + 1}^{\epsilon } \setminus U_{j_{\epsilon }}^{\epsilon }) \cap V_{\epsilon })&\le \epsilon \varLambda (N_{\epsilon } - 1)^{-1} \left( \frac{2 N_{\epsilon }}{D}\right) ^{2} \int _{V'} (u_{\epsilon }(x) - v_{\epsilon }(x))^{2} \, dx \\&\quad + \epsilon ^{-1} (N_{\epsilon } - 1)^{-1} \sum _{i = 1}^{N_{\epsilon } - 1} \int _{(U^{\epsilon }_{i + 1} \setminus U^{\epsilon }_{i}) \cap V_{\epsilon }} W(w_{i}^{\epsilon }(x)) \, dx \\&\quad + \frac{\varLambda }{\lambda } C_{0} (N_{\epsilon } - 1)^{-1}. \end{aligned}$$

Observe that there is a constant \(C_{1} > 0\) depending only on D, \(\lambda \), and \(\varLambda \) such that

$$\begin{aligned} \max \left\{ \epsilon \varLambda (N_{\epsilon } - 1)^{-1} \left( \frac{2 N_{\epsilon }}{D}\right) ^{2}, \epsilon ^{-1} (N_{\epsilon } - 1)^{-1} \right\} \le C_{1}. \end{aligned}$$

Moreover, by assumption,

$$\begin{aligned} \limsup _{\epsilon \rightarrow 0^{+}} \int _{V_{\epsilon }} \left( u_{\epsilon }(x) - v_{\epsilon }(x)\right) ^{2} \, dx \le 4\zeta . \end{aligned}$$

Similarly, since W is continuous on \([-1,1]\) and \(\mathcal {L}^{d}(V_{\epsilon }) \le \omega _{d} R^{d}\) independently of \(\epsilon \), we find

$$\begin{aligned} \limsup _{\epsilon \rightarrow 0^{+}} \left[ \sum _{i = 1}^{N_{\epsilon } - 1} \int _{(U^{\epsilon }_{i + 1} \setminus U^{\epsilon }_{i}) \cap V_{\epsilon }} W(w_{i}^{\epsilon }(x)) \, dx \right] \le \Vert W\Vert _{L^{\infty }([-1,1])} \zeta . \end{aligned}$$

Therefore, as \(\epsilon \rightarrow 0^{+}\),

$$\begin{aligned} \mathcal {F}^{\omega }_{\epsilon }(w_{j_{\epsilon }}^{\epsilon }; U_{\epsilon } \cup V_{\epsilon }) \le \mathcal {F}^{\omega }_{\epsilon }(u_{\epsilon }; U') + \mathcal {F}^{\omega }_{\epsilon }(v_{\epsilon }; V_{\epsilon }) + C_{1}(4 + \Vert W\Vert _{L^{\infty }([-1,1])}) \zeta + o(1). \end{aligned}$$

The theorem follows by setting \(\psi _{\epsilon } = \psi ^{\epsilon }_{j_{\epsilon }}\) and \(C = C_{1}(4 + \Vert W\Vert _{L^{\infty }([-1,1])})\). \(\square \)

Appendix B: Elements of Ergodic Theory

1.1 B.1 Conditional Expectation and Translations

In the proof of the thermodynamic limit, the following lemma was used. In the sequel, if X is a random variable on \((\varOmega ,\mathscr {B},\mathbb {P})\) and \(\mathcal {G} \subseteq \mathcal {F}\) is a sub-\(\sigma \)-algebra, we let \(\mathbb {E}(X \mid \mathcal {G})\) denote some fixed representative of the conditional expectation of X with respect to \(\mathcal {G}\). Recall that \(\mathbb {E}(X \mid \mathcal {G})\) is \(\mathcal {G}\)-measurable by definition, and it is unique up to almost sure equivalence.

Lemma 3

If X is a random variable on \((\varOmega ,\mathscr {B},\mathbb {P})\), \(e \in S^{d -1}\), and \(x \in \langle e \rangle ^{\perp }\), then

$$\begin{aligned} \mathbb {E}(X \circ \tau _{x} \, \mid \, \varSigma _{e}) = \mathbb {E}(X \, \mid \, \varSigma _{e}) \quad \mathbb {P}\text {-almost surely.} \end{aligned}$$

Proof

Recall that \(E \in \varSigma _{e}\) if and only if \(1_{E} \circ \tau _{x} = 1_{E}\) no matter the choice of \(x \in \langle e \rangle ^{\perp }\). Thus, for such an E and x, we find

$$\begin{aligned} \mathbb {E}(X \circ \tau _{x} : E) = \mathbb {E}((X \circ \tau _{x}) 1_{E}) =\mathbb {E}((X 1_{E})\circ \tau _{x}) = \mathbb {E}(X : E). \end{aligned}$$

Since E was arbitrary, uniqueness implies \(\mathbb {E}(X \circ \tau _{x} \, \mid \, \varSigma _{e}) = \mathbb {E}(X \, \mid \, \varSigma _{e})\) almost surely. \(\square \)

1.2 B.2 Sub-additive ergodic theorem

Since we will be applying this theorem in a somewhat unconventional “non-ergodic” form, we will state it carefully and give most of the details of the proof.

We follow Dal Maso and Modica [13] in the following definition:

Definition 5

Given \(e \in S^{d - 1}\), a random function \(\psi ^{\omega } : \mathcal {U}_{0}^{d - 1} \rightarrow \mathbb {R}\) is a sub-additive process over e if it satisfies the following conditions:

  1. (i)

    If \(G, G_{1},\dots ,G_{N} \in \mathcal {U}_{0}^{d - 1}\), \(G_{i} \subseteq G\) for each i, \(G_{i} \cap G_{j} = \phi \) for distinct ij, and \(\mathcal {L}^{d - 1}(G \setminus (\cup _{j = 1}^{N} G_{j})) = 0\), then

    $$\begin{aligned} \psi ^{\omega } (G) \le \sum _{i = 1}^{N} \psi ^{\omega }(G_{i}). \end{aligned}$$
  2. (ii)

    If \(G \in \mathcal {U}_{0}^{d - 1}\) and \(x \in \langle e \rangle ^{\perp }\), then

    $$\begin{aligned} \psi ^{\omega }(G + O_{e}^{-1}(x)) = \psi ^{\tau _{x}\omega }(G). \end{aligned}$$

Here is the version of the sub-additive ergodic theorem we will use.

Theorem 7

Suppose \(\psi ^{\omega }\) is a sub-additive process over e and there is a constant \(C_{\psi } > 0\) such that

$$\begin{aligned} 0 \le \psi ^{\omega }(G) \le C_{\psi } \mathcal {L}^{d - 1}(G) \quad \text {if} \, \, G \in \mathcal {U}_{0}^{d - 1}. \end{aligned}$$
(31)

Define \(\overline{\psi }^{\omega }\) and \(\underline{\psi }^{\omega }\) by

$$\begin{aligned} \overline{\psi }^{\omega }&= \limsup _{R \rightarrow \infty } R^{1 - d} \psi ^{\omega }(Q(0,R)) \\ \underline{\psi }^{\omega }&= \liminf _{R \rightarrow \infty } R^{1 - d} \psi ^{\omega }(Q(0,R)). \end{aligned}$$

Then \(\overline{\psi }^{\omega },\underline{\psi }^{\omega }\) are \(\varSigma _{e}\)-measurable random variables and \(\overline{\psi }^{\omega } = \underline{\psi }^{\omega }\) almost surely. Moreover, there is an event \(\varOmega _{\psi } \in \varSigma _{e}\) such that \(\mathbb {P}(\varOmega _{\psi }) = 1\) and if \(\omega \in \varOmega _{\psi }\) and Q is a cube in \(\mathbb {R}^{d - 1}\), then

$$\begin{aligned} \underline{\psi }^{\omega } \mathcal {L}^{d - 1}(Q) = \lim _{R \rightarrow \infty } R^{1- d} \psi ^{\omega }(RQ). \end{aligned}$$
(32)

The fact that \(\overline{\psi }\), \(\underline{\psi }\), and \(\varOmega _{\psi }\) are \(\varSigma _{e}\)-measurable is used in Lemma 1 and Theorem 2.

Proof

First, we claim that

$$\begin{aligned} \overline{\psi }^{\omega }&= \limsup _{\mathbb {N} \ni N \rightarrow \infty } N^{1 - d} \psi ^{\omega }(Q(0,N)) \\ \underline{\psi }^{\omega }&= \liminf _{\mathbb {N} \ni N \rightarrow \infty } N^{1 - d} \psi ^{\omega }(Q(0,N)). \end{aligned}$$

Indeed, this follows immediately from (31) and condition (i) in the definition of sub-additive process. If \(N = \lfloor R \rfloor \), then

$$\begin{aligned}&(N + 1)^{1- d} \psi ^{\omega }(Q(0,N + 1)) - C \left\{ 1 - \left( \frac{R}{N + 1}\right) ^{d - 1}\right\} \le R^{1 - d} \psi ^{\omega }(Q(0,R)) \\&R^{1 - d} \psi ^{\omega }(Q(0,R)) \le N^{1 - d} \psi ^{\omega }(Q(0,N)) + C \left\{ 1 - \left( \frac{N}{R}\right) ^{d - 1}\right\} . \end{aligned}$$

Thus, the limit inferior and limit superior do not change if we restrict R to \(\mathbb {N}\).

Now we claim that \(\overline{\psi }^{\omega }\) and \(\underline{\psi }^{\omega }\) are \(\varSigma _{e}\)-measurable. This follows from condition (ii) in the definition of sub-additive process. Suppose \(x \in \langle e \rangle ^{\perp }\). Notice that \(Q(0,N) \subseteq Q(x,N + |x|_{\infty })\). Moreover, \(\frac{N + |x|_{\infty }}{N} \rightarrow 1\) as \(N \rightarrow \infty \). Using (31), we find

$$\begin{aligned} \psi ^{\omega }(Q(O_{e}^{-1}(x),N + |x|_{\infty })) \le \psi ^{\omega }(Q(0,N)) + C_{\psi } ((N + |x|_{\infty })^{d - 1} - N^{d - 1}). \end{aligned}$$

Therefore, from the equality \(\psi ^{\tau _{x}\omega }(Q(0,N + |x|_{\infty })) = \psi ^{\omega }(Q(O_{e}^{-1}(x),N + |x|_{\infty }))\), we deduce that \(\overline{\psi }^{\tau _{x} \omega } \le \overline{\psi }^{\omega }\) and \(\underline{\psi }^{\tau _{x}\omega } \le \underline{\psi }^{\omega }\). Replacing x with \(-x\) yields the complementary inequality. Thus, \(\overline{\psi }^{\omega }\) and \(\underline{\psi }^{\omega }\) are \(\varSigma _{e}\)-measurable.

Let \(\varOmega ^{(1)} = \{\omega \in \varOmega \, \mid \, \overline{\psi }^{\omega } = \underline{\psi }^{\omega }\}\). By the (multi-parameter) sub-additive ergodic theorem (cf. [19]), \(\mathbb {P}(\varOmega ^{(1)}) = 1\). In other words, \(\overline{\psi }^{\omega } = \underline{\psi }^{\omega }\) almost surely.

Next, let \(\mathcal {D}_{\mathbb {Q}}\) be the family of all open cubes in \(\mathbb {R}^{d -1}\) with rational endpoints, that is, \(\mathcal {D}_{\mathbb {Q}} = \{Q(y,\rho ) \, \mid \, y \in \mathbb {Q}^{d - 1}, \, \, \rho \in \mathbb {Q} \cap (0,\infty )\}\). Define the event \(\varOmega ^{(2)}\) by

$$\begin{aligned} \varOmega ^{(2)} = \bigcap _{Q \in \mathcal {D}_{\mathbb {Q}}} \left\{ \omega \in \varOmega \, \mid \, \underline{\psi }^{\omega }\mathcal {L}^{d -1}(Q) = \lim _{\mathbb {N} \ni N \rightarrow \infty } N^{1- d} \psi ^{\omega }(NQ) \right\} . \end{aligned}$$

The sub-additive ergodic theorem implies \(\varOmega ^{(2)}\) is a countable intersection of probability one events. Therefore, \(\mathbb {P}(\varOmega ^{(2)}) = 1\). Arguing as before, we see that \(\varOmega ^{(2)}\) can alternatively be characterized as follows:

$$\begin{aligned} \varOmega ^{(2)} = \bigcap _{Q \in \mathcal {D}_{\mathbb {Q}}} \left\{ \omega \in \varOmega \, \mid \, \underline{\psi }^{\omega }\mathcal {L}^{d -1}(Q) = \lim _{R \rightarrow \infty } R^{1- d} \psi ^{\omega }(RQ) \right\} . \end{aligned}$$

Similarly, the arguments used to show \(\underline{\psi }^{\omega }\) and \(\overline{\psi }^{\omega }\) are \(\varSigma _{e}\)-measurable can be adapted to prove \(\varOmega ^{(2)} \in \varSigma _{e}\).

Finally, let \(\mathcal {D} = \{Q(y,\rho ) \, \mid \, y \in \mathbb {R}^{d - 1}, \, \rho > 0\}\). We claim that

$$\begin{aligned} \varOmega ^{(2)} = \bigcap _{Q \in \mathcal {D}} \left\{ \omega \in \varOmega \, \mid \, \underline{\psi }^{\omega }\mathcal {L}^{d -1}(Q) = \lim _{R \rightarrow \infty } R^{1- d} \psi ^{\omega }(RQ) \right\} . \end{aligned}$$

This follows since we can approximate any cube in \(\mathcal {D}\) by a cube in \(\mathcal {D}_{\mathbb {Q}}\). As the arguments are similar to the ones already exposed, we omit the details.

The proposition follows with \(\varOmega _{\psi } = \varOmega ^{(1)} \cap \varOmega ^{(2)}\). \(\square \)

In Sect. 4.4, we will use the following version of Birkhoff’s ergodic theorem. Since we use the fact that the event on which it holds is in \(\varSigma \), we provide a complete statement and sketch the proof:

Theorem 8

If \(E \in \mathscr {B}\), then there is an \(\varOmega _{E} \in \varSigma \) satisfying \(\mathbb {P}(\varOmega _{E}) = 1\) such that if Q is any open cube in \(\mathbb {R}^{d}\), then

$$\begin{aligned} \mathbb {P}(E) \mathcal {L}^{d}(Q) = \lim _{R \rightarrow \infty } R^{-d} \mathcal {L}^{d}(\{x \in RQ \, \mid \, \tau _{x} \omega \in E\}) \quad \text {if} \, \, \omega \in \varOmega _{E}. \end{aligned}$$

The \(\varSigma \)-measurability of \(\varOmega _{E}\) is used in the proof of Proposition 9 to show that the event \(\hat{\varOmega }\) in Theorem 1 is itself \(\varSigma \)-measurable.

Proof

Define a sub-additive process \(\psi ^{\omega } : \mathcal {U}_{0}^{d} \rightarrow \mathbb {R}\) by

$$\begin{aligned} \psi ^{\omega }(A) = \mathcal {L}^{d}(\{x \in A \, \mid \, \tau _{x} \omega \in E\}). \end{aligned}$$

It is straightforward to verify that \(\psi ^{\omega }\) satisfies Definition 5 with \(d - 1\) replaced by d and \(\langle e \rangle ^{\perp }\) replaced by \(\mathbb {R}^{d}\). These changes have no bearing on the proof of Theorem 7 other than switching \(\varSigma \) for \(\varSigma _{e}\).

As for the value of the limit, we can see that it should be \(\mathbb {P}(E)\) by appealing to the dominated convergence theorem and ergodicity. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morfe, P.S. Surface Tension and \(\varGamma \)-Convergence of Van der Waals–Cahn–Hilliard Phase Transitions in Stationary Ergodic Media. J Stat Phys 181, 2225–2256 (2020). https://doi.org/10.1007/s10955-020-02662-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-020-02662-5

Keywords

Navigation