Skip to main content
Log in

Motion by curvature by scaling nonlocal evolution equations

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We prove convergence to a motion by mean curvature by scaling diffusively a nonlinear, nonlocal evolution equation. This equation was introduced earlier to describe the macroscopic behavior of a ferromagnetic spin system with Kac interaction which evolves with Glauber dynamics. The convergence is proven in any time interval in which the limiting motion is regular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Barles, H. M. Soner, and P. E. Souganidis, Front propagation and phase field theory, Center for Nonlinear Analysis, Research report 92-NA-020, Carnegie-Mellon University (1992).

  2. L. Bonaventura, Motion by curvature in an interacting spin system, preprint, Dipartimento Matematico, Trento, report UTM 368 (1992).

  3. L. Bronsard and R. V. Kohn, Motion by mean curvature as the singular limit of Ginzburg Landau dynamics,J. Diff. Equations 90:211–237 (1991).

    Google Scholar 

  4. P. Buttà, On the validity of an Einstein relation in models of interface dynamics,J. Stat. Phys., to appear.

  5. X. Chen, Generation and propagation of interfaces in reaction diffusion systems,J. Diff. Equations 96:116–141 (1992).

    Google Scholar 

  6. Y. G. Chen, Y. Giga, and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations,J. Diff. Geom. 33:749–786 (1991).

    Google Scholar 

  7. M. G. Crandall and P. L. Lions, Viscosity solutions of Hamilton-Jacobi equations,Trans. Am. Math. Soc. 27:1–42 (1983).

    Google Scholar 

  8. R. Dal Passo and P. de Mottoni, The heat equation with a nonlocal density dependent advection term, preprint (1991).

  9. A. De Masi, E. Orlandi, E. Presutti, and L. Triolo, Glauber evolution with Kac potentials: I. Macroscopic equations and fluctuation theory, CARR report 9/92 (1992).

  10. A. De Masi, E. Orlandi, E. Presutti, and L. Triolo, Glauber evolution with Kac potentials: II. Spinodal decomposition, CARR report 28/92 (1992).

  11. A. De Masi, E. Orlandi, E. Presutti, and L. Triolo, Stability of the interface in a model of phase separation, CARR report 29/92 (1992).

  12. A. De Masi, E. Orlandi, E. Presutti, and L. Triolo, Uniqueness of the instanton profile and global stability in non local evolution equations, CARR report 10/93 (1993).

  13. A. De Masi, E. Orlandi, E. Presutti, and L. Triolo, In preparation.

  14. P. de Mottoni and M. Schatzman, Évolution géométrique d'interfaces,C. R. Acad. Sci. Paris 309:453–458 (1989).

    Google Scholar 

  15. L. C. Evans, H. M. Soner, and P. E. Souganidis, Phase transitions and generalized motion by mean curvature,Commun. Pure Appl. Math. XLV:1097–1123 (1992).

    Google Scholar 

  16. L. C. Evans and J. Spruck, Motion of level sets by mean curvature,J. Diff. Geom. 33:635–681 (1991); Motion of level sets by mean curvature. II,Trans. Am. Math. Soc. 330:321–332 (1992); Motion of level sets by mean curvature. III,J. Geom. Anal. 2:121–150 (1992).

    Google Scholar 

  17. P. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions,Arch. Rat. Mech. Anal. 65:335–361 (1977).

    Google Scholar 

  18. M. Kac, G. Uhlenbeck, and P. C. Hemmer, On the van der Waals theory of vapor-liquid equilibrium. I. Discussion of a one dimensional model,J. Math. Phys. 4:216–228 (1963); II. Discussion of the distribution functions,J. Math. Phys. 4:229–247 (1963); III. Discussion of the critical region,J. Math. Phys. 5:60–74 (1964).

    Google Scholar 

  19. M. A. Katsoulakis, G. T. Kossioris, and F. Reitich, Generalized motion by mean curvature with Neumann conditions and the Allen-Cahn model for phase transitions, Center for Nonlinear Analysis, Research report 92-NA-036, Carnegie-Mellon University (1992).

  20. M. A. Katsoulakis and E. Souganidis, Interacting particle systems and generalized motion by mean curvature, preprint (1992).

  21. J. L. Lebowitz and O. Penrose, Rigorous treatment of the van der Waals-Maxwell theory of the liquid vapour transition,J. Math. Phys. 7:98–113 (1966).

    Google Scholar 

  22. P. L. Lions, Optimal control of diffusion processes. Part 2: Viscosity solutions and uniqueness,Commun. PDE 8:1229–1276 (1983).

    Google Scholar 

  23. J. Rubinstein, P. Sternberg, and J. Keller, Fast reaction, slow diffusion and curve shortening,SIAM J. Appl. Math. 49:116–133 (1989).

    Google Scholar 

  24. H. M. Soner, Motion of a set by the curvature of its boundary,J. Diff. Equations 101:313–372 (1993).

    Google Scholar 

  25. H. Spohn, Interface motion in models with stochastic dynamics, preprint (July 1992).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Masi, A., Orlandi, E., Presutti, E. et al. Motion by curvature by scaling nonlocal evolution equations. J Stat Phys 73, 543–570 (1993). https://doi.org/10.1007/BF01054339

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01054339

Key words

Navigation