Skip to main content
Log in

Local Well-Posedness of Vlasov–Poisson–Boltzmann Equation with Generalized Diffuse Boundary Condition

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The Vlasov–Poisson–Boltzmann equation is a classical equation governing the dynamics of charged particles with the electric force being self-imposed. We consider the system in a convex domain with the Cercignani–Lampis boundary condition. We construct a uniqueness local-in-time solution based on an \(L^\infty \)-estimate and \(W^{1,p}\)-estimate. In particular, we develop a new iteration scheme along the characteristic with the Cercignani–Lampis boundary for the \(L^\infty \)-estimate, and an intrinsic decomposition of boundary integral for \(W^{1,p}\)-estimate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aoki, K., Bardos, C., Dogbe, C., Golse, F.: A note on the propagation of boundary induced discontinuities in kinetic theory. Math. Models Methods Appl. Sci. 11(09), 1581–1595 (2001)

    Article  MathSciNet  Google Scholar 

  2. Cao, Y., Kim, C., Lee, D.: Global strong solutions of the Vlasov–Poisson–Boltzmann system in bounded domains. Arch. Ration. Mech. Anal. 233, 1027–1130 (2019)

    Article  MathSciNet  Google Scholar 

  3. Cercignani, C.: The Boltzmann Equation. The Boltzmann Equation and Its Applications, pp. 40–103. Springer, New York (1988)

    Book  Google Scholar 

  4. Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases, vol. 106. Springer Science & Business Media, Berlin (2013)

    MATH  Google Scholar 

  5. Cercignani, C., Lampis, M.: Kinetic models for gas-surface interactions. Transp. Theory Stat. Phys. 1(2), 101–114 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  6. Chen, Hongxu: Cercignani–Lampis boundary in Boltzmann theory. Kinet. Relat. Models 13(3), 549–597 (2020)

    Article  Google Scholar 

  7. Cowling, T.G.: On the Cercignani-Lampis formula for gas-surface interactions. J. Phys. D 7(6), 781 (1974)

    Article  ADS  Google Scholar 

  8. Esposito, R., Guo, Y., Kim, C., Marra, R.: Non-isothermal boundary in the Boltzmann theory and Fourier law. Commun. Math. Phys. 323(1), 177–239 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  9. Esposito, R., Guo, Y., Kim, C., Marra, R.: Stationary solutions to the Boltzmann equation in the hydrodynamic limit. Ann. PDE 4(1), 1 (2018)

    Article  MathSciNet  Google Scholar 

  10. Garcia, R.D.M., Siewert, C.E.: The linearized Boltzmann equation with Cercignani-Lampis boundary conditions: Basic flow problems in a plane channel. Eur. J. Mechan. B/Fluids 28(3), 387–396 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  11. Garcia, R.D.M., Siewert, C.E.: Viscous-slip, thermal-slip, and temperature-jump coefficients based on the linearized Boltzmann equation (and five kinetic models) with the Cercignani-Lampis boundary condition. Eur. J. Mechan. B/Fluids 29(3), 181–191 (2010)

    Article  ADS  Google Scholar 

  12. Glassey, R.T.: The Cauchy Problem in Kinetic Theory, vol. 52. SIAM, Philadelphia (1996)

    Book  Google Scholar 

  13. Guo, Y.: The Vlasov–Poisson–Boltzmann system near Maxwellians. Commun. Pure Appl. Math. A 55(9), 1104–1135 (2002)

    Article  MathSciNet  Google Scholar 

  14. Guo, Y.: Decay and continuity of the Boltzmann equation in bounded domains. Arch. Ration. Mech. Anal. 197(3), 713–809 (2010)

    Article  MathSciNet  Google Scholar 

  15. Guo, Y., Kim, C., Tonon, D., Trescases, A.: Regularity of the Boltzmann equation in convex domains. Invent. Math. 207(1), 115–290 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  16. Kim, C.: Formation and propagation of discontinuity for boltzmann equation in non-convex domains. Commun. Math. Phys. 308(3), 641–701 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  17. Kim, C., Lee, D.: The boltzmann equation with specular boundary condition in convex domains. Commun. Pure Appl. Math. 71(3), 411–504 (2018)

    Article  MathSciNet  Google Scholar 

  18. Knackfuss, R.F., Barichello, L.B.: Surface effects in rarefied gas dynamics: an analysis based on the Cercignani-Lampis boundary condition. Eur. J. Mech. B/Fluids 25(1), 113–129 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  19. Lord, R.G.: Some further extensions of the Cercignani-Lampis gas-surface interaction model. Phys. Fluids 7(5), 1159–1161 (1995)

    Article  ADS  Google Scholar 

  20. Majda, A.J., Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow, vol. 27. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  21. Sharipov, F.: Application of the Cercignani–Lampis scattering kernel to calculations of rarefied gas flows. II. Slip and jump coefficients. Eur. J. Mech. B/Fluids 22(2), 133–143 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  22. Sharipov, F.: Application of the Cercignani–Lampis scattering kernel to calculations of rarefied gas flows. III. Poiseuille flow and thermal creep through a long tube. Eur. J. Mech. B/Fluids 22(2), 145–154 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  23. Woronowicz, M.S., Rault, D.F.G.: Cercignani-lampis-lord gas surface interaction model-comparisons between theory and simulation. J. Spacec. Rockets 31(3), 532–534 (1994)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Q.L. is support in part by National Science Foundation under award 1619778, 1750488. H.C. is support in part by Wisconsin Data Science Initiative. C.K. is research is partly support in part by National Science Foundation under award NSF DMS-1501031, DMS-1900923.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxu Chen.

Additional information

Communicated by Eric A. Carlen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Lemma 15

For \(R(u\rightarrow v;x,t)\) given by (1.11), given any u such that \(u\cdot n(x)>0\),

$$\begin{aligned} \int _{n(x)\cdot v<0}R(u\rightarrow v;x,t)dv=1. \end{aligned}$$
(6.1)

Proof

We can transform the basis from \(\{n,\tau _1,\tau _2\}\) to the standard bases \(\{e_1,e_2,e_3\}\). For the sake of simplicity, we assume \(T_w(x)=1\). The integration over \({\mathcal {V}}_\parallel \), after the orthonormal transformation, becomes integration over \({\mathbb {R}}^2\). We have

$$\begin{aligned} \int _{{\mathbb {R}}^2} \frac{1}{r_\parallel (2-r_\parallel )} \exp \Big (\frac{|v_\parallel -(1-r_\parallel )u_\parallel |^2}{r_\parallel (2-r_\parallel )} \Big )dv_\parallel , \end{aligned}$$

which is obviously normalized.

Then we consider the integration over \({\mathcal {V}}_\perp \), which is \(e_3<0\) after the transformation. We want to show

$$\begin{aligned} \frac{2}{r_\perp }\int _{-\infty }^0 -v_\perp e^{-\frac{|v_\perp |^2}{r_\perp }}e^{\frac{-(1-r_\perp )|u_\perp |^2}{r_\perp }}I_0(\frac{2(1-r_\perp )^{1/2}v_\perp u_\perp }{r_\perp })dv_\perp =1. \end{aligned}$$
(6.2)

The Bessel function reads

$$\begin{aligned} J_0(y)=\frac{1}{\pi }\int _0^{\pi } e^{iy\cos \theta }d\theta= & {} \sum _{k=0}^\infty \frac{1}{\pi }\int _0^\pi \frac{(iy\cos \theta )^k}{k!} d\theta =\sum _{k=0}^\infty \int _0^\pi \frac{(iy\cos \theta )^{2k}}{(2k)!} d\theta \\ \sum _{k=0}^\infty \int _0^\pi \frac{(-1)^k (y)^{2k} (\cos \theta )^{2k}}{(2k)!}d\theta= & {} \sum _{k=0}^\infty (-1)^k \frac{(\frac{1}{4}y^2)^k}{(k!)^2}, \end{aligned}$$

where we use the Fubini’s theorem and the fact that

$$\begin{aligned} \int _0^\pi \cos ^{2k}\theta =\frac{\pi }{2^{2k}}\left( \begin{array}{c} 2k \\ k \\ \end{array} \right) . \end{aligned}$$

Hence

$$\begin{aligned} I_0(y)=\frac{1}{\pi }\int _0^\pi e^{i(-iy)\cos \theta }d\theta =J_0(-iy)=\sum _{k=0}^\infty \frac{(\frac{1}{4}y^2)^k}{(k!)^2},\quad I_0(y)=I_0(-y). \end{aligned}$$
(6.3)

By taking the change of variable \(v_\perp \rightarrow -v_\perp \), the LHS of (6.2) can be written as

$$\begin{aligned} \frac{2}{r_\perp }\int _{0}^\infty v_\perp e^{-\frac{|v_\perp |^2}{r_\perp }}e^{\frac{-(1-r_\perp )|u_\perp |^2}{r_\perp }}I_0(\frac{2(1-r_\perp )^{1/2}v_\perp u_\perp }{r_\perp })dv_\perp . \end{aligned}$$

Using (6.3) we rewrite the above term as

$$\begin{aligned} \sum _{k=0}^\infty \frac{2}{r_\perp }\int _0^\infty v_\perp e^{\frac{-|v_\perp |^2}{r_\perp }} e^{\frac{-(1-r_\perp )|u_\perp |^2}{r_\perp }}\frac{(1-r_\perp )^k v_\perp ^{2k}u_\perp ^{2k}}{(k!)^2r_\perp ^{2k}}dv, \end{aligned}$$
(6.4)

where we use the Tonelli theorem. Rescale \(v_\perp =\sqrt{r_\perp }v_\perp \) we have

$$\begin{aligned}&\frac{2}{r_\perp }\int _0^\infty v_\perp e^{\frac{-|v_\perp |^2}{r_\perp }} e^{\frac{-(1-r_\perp )|u_\perp |^2}{r_\perp }}\frac{(1-r_\perp )^k v_\perp ^{2k}u_\perp ^{2k}}{(k!)^2r_\perp ^{2k}}dv\nonumber \\&\quad =2\int _0^\infty v_\perp e^{-|v_\perp |^2} e^{\frac{-(1-r_\perp )|u_\perp |^2}{r_\perp }}\frac{(1-r_\perp )^k v_\perp ^{2k}u_\perp ^{2k}}{(k!)^2r_\perp ^{k}}dv \nonumber \\&\quad =2\int _0^\infty v_\perp ^{2k+1}e^{-|v_\perp |^2}dv e^{\frac{-(1-r_\perp )|u_\perp |^2}{r_\perp }}\frac{(1-r_\perp )^k u_\perp ^{2k}}{(k!)^2r_\perp ^{k}} \nonumber \\&\quad =2\frac{k!}{2}e^{\frac{-(1-r_\perp )|u_\perp |^2}{r_\perp }}\frac{(1-r_\perp )^k u_\perp ^{2k}}{(k!)^2r_\perp ^{k}}=e^{\frac{-(1-r_\perp )|u_\perp |^2}{r_\perp }}\frac{(1-r_\perp )^k u_\perp ^{2k}}{k!r_\perp ^{k}}. \end{aligned}$$
(6.5)

Therefore, the LHS of (6.2) can be written as

$$\begin{aligned} e^{\frac{-(1-r_\perp )|u_\perp |^2}{r_\perp }}\sum _{k=0}^\infty \frac{(1-r_\perp )^k u_\perp ^{2k}}{k!r_\perp ^{k}} =e^{\frac{-(1-r_\perp )|u_\perp |^2}{r_\perp }}e^{\frac{(1-r_\perp )|u_\perp |^2}{r_\perp }}=1. \end{aligned}$$

\(\square \)

Lemma 16

For any \(a>0,b>0,\varepsilon >0\) with \(a+\varepsilon <b\),

$$\begin{aligned} \frac{b}{\pi }\int _{{\mathbb {R}}^2} e^{\varepsilon |v|^2} e^{a|v|^2}e^{-b|v-w|^2}dv=\frac{b}{b-a-\varepsilon }e^{\frac{(a+\varepsilon )b}{b-a-\varepsilon }|w|^2}. \end{aligned}$$
(6.6)

And when \(\delta \ll 1\),

$$\begin{aligned} \frac{b}{\pi }\int _{|v-\frac{b}{b-a-\varepsilon }w|>\delta ^{-1}} e^{\varepsilon |v|^2} e^{a|v|^2}e^{-b|v-w|^2}dv\le & {} e^{-(b-a-\varepsilon )\delta ^{-2}} \frac{b}{b-a-\varepsilon } e^{\frac{(a+\varepsilon )b}{b-a-\varepsilon }|w|^2} \end{aligned}$$
(6.7)
$$\begin{aligned}\le & {} \delta \frac{b}{b-a-\varepsilon }e^{\frac{(a+\varepsilon )b}{b-a-\varepsilon }|w|^2} . \end{aligned}$$
(6.8)

Proof

$$\begin{aligned}&\frac{b}{\pi }\int _{{\mathbb {R}}^2} e^{\varepsilon |v|^2} e^{a|v|^2}e^{-b|v-w|^2}dv = \frac{b}{\pi }\int _{{\mathbb {R}}^2} e^{(a+\varepsilon -b)|v|^2} e^{2bv\cdot w} e^{-b|w|^2}dv \\&\quad =\frac{b}{\pi }\int _{{\mathbb {R}}^2} e^{(a+\varepsilon -b)|v+\frac{b}{a+\varepsilon -b}w|^2} e^{\frac{-b^2}{a+\varepsilon -b}|w|^2} e^{-b|w|^2}dv\\&\quad =\frac{b}{\pi }\int _{{\mathbb {R}}^2} e^{(a+\varepsilon -b)|v|^2}dv e^{\frac{(a+\varepsilon )b}{b-a-\varepsilon }|w|^2}=\frac{b}{b-a-\varepsilon }e^{\frac{(a+\varepsilon )b}{b-a-\varepsilon }|w|^2}, \end{aligned}$$

where we apply change of variable \(v+\frac{b}{a+\varepsilon -b}w\rightarrow v\) in the first step of the last line, then we obtain (6.6).

Following the same derivation

$$\begin{aligned}&\frac{b}{\pi }\int _{|v-\frac{b}{b-a-\varepsilon }w|>\delta ^{-1}} e^{\varepsilon |v|^2} e^{a|v|^2}e^{-b|v-w|^2}dv \\&\quad =\frac{b}{\pi }\int _{|v-\frac{b}{b-a-\varepsilon }w|>\delta ^{-1}} e^{(a+\varepsilon -b)|v-\frac{b}{b-a-\varepsilon }w|^2}dv e^{\frac{(a+\varepsilon )b}{b-a-\varepsilon }|w|^2}\\&\quad \le e^{-(b-a-\varepsilon )\delta ^{-2}} \frac{b}{b-a-\varepsilon } e^{\frac{(a+\varepsilon )b}{b-a-\varepsilon }|w|^2} \le \delta \frac{b}{b-a-\varepsilon } e^{\frac{(a+\varepsilon )b}{b-a-\varepsilon }|w|^2}, \end{aligned}$$

thus we obtain (6.8). \(\square \)

Lemma 17

For any \(a>0,b>0,\varepsilon >0\) with \(a+\varepsilon <b\),

$$\begin{aligned} 2b\int _{{\mathbb {R}}^+}v e^{\varepsilon v^2}e^{av^2} e^{-bv^2}e^{-bw^2}I_0(2bv w)dv=\frac{b}{b-a-\varepsilon }e^{\frac{(a+\varepsilon )b}{b-a-\varepsilon }w^2}. \end{aligned}$$
(6.9)

And when \(\delta \ll 1\),

$$\begin{aligned} 2b\int _{0< v<\delta }v e^{\varepsilon v^2}e^{av^2} e^{-bv^2}e^{-bw^2}I_0(2bv w)dv\le \delta \frac{b}{b-a-\varepsilon }e^{\frac{(a+\varepsilon )b}{b-a-\varepsilon }w^2}. \end{aligned}$$
(6.10)

Proof

$$\begin{aligned}&2b\int _{{\mathbb {R}}^+}v e^{\varepsilon v^2}e^{av^2} e^{-bv^2}e^{-bw^2}I_0(2bv w)dv \\&\quad =2b\int _{{\mathbb {R}}^+} v e^{(a+\varepsilon -b)v^2}I_0(2bv w) e^{\frac{b^2}{a+\varepsilon -b}w^2} e^{\frac{b^2}{b-a-\varepsilon }w^2} dv e^{-bw^2}\\&\quad =2(b-a-\varepsilon )\int _{{\mathbb {R}}^+}v e^{(a+\varepsilon -b)v^2}I_0(2bv w)e^{\frac{(bw)^2}{a+\varepsilon -b}}dv \frac{b}{b-a-\varepsilon }e^{\frac{(a+\varepsilon )b}{b-a-\varepsilon }w^2}\\&\quad =\frac{b}{b-a-\varepsilon }e^{\frac{(a+\varepsilon )b}{b-a-\varepsilon }w^2}, \end{aligned}$$

where we use (6.2) in Lemma 15 in the last line, then we obtain (6.9).

Following the same derivation we have

$$\begin{aligned}&2b\int _{0< v< \delta }v e^{\varepsilon v^2}e^{av^2} e^{-bv^2}e^{-bw^2}I_0(2bv w)dv \\&\quad =2(b-a-\varepsilon )\int _{0<v<\delta } v e^{(a+\varepsilon -b)v^2}I_0(2bv w)e^{\frac{(bw)^2}{a+\varepsilon -b}}dv \frac{b}{b-a-\varepsilon }e^{\frac{(a+\varepsilon )b}{b-a-\varepsilon }w^2}. \end{aligned}$$

Using the definition of \(I_0\) we have

$$\begin{aligned} I_0(y)=\frac{1}{\pi }\int _{0}^{\pi } e^{y\cos \phi }d\phi \le e^{y}. \end{aligned}$$

Thus when \(a-b+\varepsilon <0\),

$$\begin{aligned}&2(b-a-\varepsilon )\int _{0<v<\delta } v e^{(a+\varepsilon -b)v^2}I_0(2bv w)e^{\frac{(bw)^2}{a+\varepsilon -b}}dv \\&\quad \le 2(b-a-\varepsilon )\int _{0<v<\delta } v e^{(a-b+\varepsilon )v^2}e^{2v b w}e^{\frac{(bw)^2}{a-b+\varepsilon }}\\&\quad =2(b-a-\varepsilon )\int _{0<v<\delta } v e^{(a-b+\varepsilon )(v+\frac{bw}{a-b+\varepsilon })^2}dv\\&\quad \le 2(b-a-\varepsilon )\int _{0<v<\delta }vdv<\delta , \end{aligned}$$

where we use \(\delta \ll 1\) in the last step, then we obtain (6.10). Then we derive (6.13). \(\square \)

Lemma 18

For any \(m,n>0\), when \(\delta \ll 1\), we have

$$\begin{aligned} 2m^2\int _{\frac{n}{m}u_\perp +\delta ^{-1}}^\infty v_\perp e^{-m^2v_\perp ^2}I_0(2mnv_\perp u_\perp )e^{-n^2u_\perp ^2}dv_\perp \lesssim e^{-\frac{m^2}{4\delta ^{2}}}. \end{aligned}$$
(6.11)

In consequence, for any \(a>0,b>0,\varepsilon >0\) with \(a+\varepsilon <b\),

$$\begin{aligned} 2b\int _{\frac{b}{b-a-\varepsilon }w+\delta ^{-1}}^\infty v e^{\varepsilon v^2}e^{av^2} e^{-bv^2}e^{-bw^2}I_0(2bv w)dv\le & {} e^{\frac{-(b-a-\varepsilon )}{4\delta ^2}}\frac{b}{b-a-\varepsilon }e^{\frac{(a+\varepsilon )b}{b-a-\varepsilon }w^2} \end{aligned}$$
(6.12)
$$\begin{aligned}\le & {} \delta \frac{b}{b-a-\varepsilon }e^{\frac{(a+\varepsilon )b}{b-a-\varepsilon }w^2}. \end{aligned}$$
(6.13)

Proof

We discuss two cases. The first case is \(v_\perp >2\frac{n}{m}u_\perp \). We bound \(I_0\) as

$$\begin{aligned} I_0(2mnv_\perp u_\perp )\le \frac{1}{\pi }\int _0^\pi \exp \Big ( 2mnv_\perp u_\perp \Big ) d\theta =\exp \Big (2mnv_\perp u_\perp \Big ). \end{aligned}$$

The LHS of (6.11) is bounded by

$$\begin{aligned} 2m^2\int _{\max \{2\frac{n}{m}u_\perp ,\frac{n}{m}u_\perp +\delta ^{-1}\}}^\infty ve^{-m^2(v_\perp -\frac{n}{m}u_\perp )^2}dv. \end{aligned}$$

Using \(v_\perp >2\frac{n}{m}u_\perp \) we have

$$\begin{aligned} (v_\perp -\frac{n}{m}u_\perp )^2\ge (\frac{v_\perp }{2}+\frac{v_\perp }{2}-\frac{n}{m}u_\perp )^2 \ge \frac{v_\perp ^2}{4}. \end{aligned}$$

Thus we can further bound LHS of (6.11) by

$$\begin{aligned} 2m^2\int _{\max \{2\frac{n}{m}u_\perp ,\frac{n}{m}u_\perp +\delta ^{-1}\}}^\infty v_\perp e^{-\frac{m^2 v_\perp ^2}{4}} dv_\perp \lesssim e^{-\frac{m^2}{4\delta ^2}}. \end{aligned}$$

The second case is \(0\le v_\perp \le 2\frac{n}{m}u_\perp \). Since \(\frac{n}{m}u_\perp +\delta ^{-1}<v_\perp \), without loss of generality, we can assume \(u_\perp >\delta ^{-1}\). We compare the Taylor series of \(v_\perp I_0(2mnv_\perp u_\perp )\) and \(\exp \Big (2mnv_\perp u_\perp \Big )\). We have

$$\begin{aligned} v_\perp I_0(2mnv_\perp u_\perp )=\sum _{k=0}^\infty \frac{m^{2k}n^{2k}v_\perp ^{2k+1}u_\perp ^{2k}}{(k!)^2}, \end{aligned}$$
(6.14)

and

$$\begin{aligned} \exp \Big (2mnv_\perp u_\perp \Big )=\sum _{k=0}^\infty \frac{2^k m^k n^k v_\perp ^k u_\perp ^k}{k!}. \end{aligned}$$
(6.15)

We choose \(k_1\) such that when \(k>k_1\), we can apply the Sterling formula such that

$$\begin{aligned} \frac{1}{2}\le |\frac{k!}{k^ke^{-k}\sqrt{2\pi k}}|\le 2. \end{aligned}$$

Then we observe the quotient of the k-th term of (6.14) and the \(2k+1\)-th term of (6.15),

$$\begin{aligned}&\frac{m^{2k}n^{2k}v_\perp ^{2k+1}u_\perp ^{2k}}{(k!)^2}/\Big (\frac{2^{2k+1} m^{2k+1}n^{2k+1}v_\perp ^{2k+1} u_\perp ^{2k+1}}{(2k+1)!} \Big ) \\&\quad \le \frac{4}{k^{2k}e^{-2k}2\pi k}/\Big (\frac{2^{2k+1} mn u_\perp }{(2k+1)^{2k+1}e^{-(2k+1)}\sqrt{2\pi (2k+1)}} \Big )\\&\quad = \frac{4e}{2\pi mn}\Big (\frac{k+1/2}{k} \Big )^{2k+1} \frac{\sqrt{2\pi (2k+1)}}{u_\perp }\\&\quad = \frac{4e}{2\pi mn}\Big (\frac{2k+1}{2k} \Big )^{2k+1} \frac{\sqrt{2\pi (2k+1)}}{u_\perp }\le \frac{4e^2}{\sqrt{\pi } mn} \frac{\sqrt{k}}{u_\perp }. \end{aligned}$$

Thus we can take \(k_u=u_\perp ^2\) such that when \(k\le k_u\),

$$\begin{aligned} \sum _{k=k_1}^{k_u} \frac{m^{2k}n^{2k}v_\perp ^{2k+1}u_\perp ^{2k}}{(k!)^2}\le \frac{4e^2}{\sqrt{\pi }mn}\sum _{k=k_1}^{k_u} \frac{2^{2k+1} m^{2k+1}n^{2k+1}v_\perp ^{2k+1} u_\perp ^{2k+1}}{(2k+1)!}. \end{aligned}$$
(6.16)

Similarly we observe the quotient of the k-th term of (6.14) and the 2k-th term of (6.15),

$$\begin{aligned}&\frac{m^{2k}n^{2k}v_\perp ^{2k+1}u_\perp ^{2k}}{(k!)^2}/\Big (\frac{2^{2k} m^{2k}n^{2k}v_\perp ^{2k} u_\perp ^{2k}}{(2k)!} \Big )\\&\quad \le \frac{4v_\perp }{k^{2k}e^{-2k}2\pi k}/\Big (\frac{2^{2k}}{(2k)^{2k}e^{-2k}\sqrt{4\pi k}} \Big )=\frac{4v_\perp }{\sqrt{\pi } \sqrt{k}}. \end{aligned}$$

When \(k>k_u=u_\perp ^2\), by \(u_\perp >\delta ^{-1}\) and \(v_\perp <2\frac{n}{m}u_\perp \) we have

$$\begin{aligned} \frac{4v_\perp }{\sqrt{\pi } \sqrt{k}}\le \frac{4v_\perp }{\sqrt{\pi }u_\perp }\le \frac{8n}{m\sqrt{\pi }}. \end{aligned}$$

Thus we have

$$\begin{aligned} \sum _{k=k_u}^\infty \frac{m^{2k}n^{2k}v_\perp ^{2k+1}u_\perp ^{2k}}{(k!)^2}\le \frac{8n}{m\sqrt{\pi }}\sum _{k=k_u}^\infty \frac{2^{2k} m^{2k}n^{2k}v_\perp ^{2k} u_\perp ^{2k}}{(2k)!}. \end{aligned}$$
(6.17)

Collecting (6.17) (6.16), when \(v_\perp <2\frac{n}{m}u_\perp \), we obtain

$$\begin{aligned} v_\perp I_0(2mnv_\perp u_\perp )\lesssim \exp \Big (\frac{2(1-r_\perp )^{1/2} v_\perp u_\perp }{r_\perp } \Big ). \end{aligned}$$
(6.18)

By (6.18), we have

$$\begin{aligned}&\int _{\frac{n}{m}u_\perp +\delta ^{-1}}^{2\frac{n}{m}u_\perp }v_\perp I_0(2mnv_\perp u_\perp )) e^{-m^2v_\perp ^2}e^{n^2 v_\perp ^2}dv \nonumber \\&\quad \lesssim \int _{\frac{n}{m}u_\perp +\delta ^{-1}}^{2\frac{n}{m}u_\perp } e^{-m^2(v_\perp -\frac{n}{m}u_\perp )^2} dv\le e^{-m^2\delta ^{-2}}. \end{aligned}$$
(6.19)

Collecting (6.15) and (6.19) we prove (6.11).

Then following the same derivation as (6.9),

$$\begin{aligned}&2b\int _{\frac{b}{b-a-\varepsilon }w+\delta ^{-1}}^\infty v e^{\varepsilon v^2}e^{av^2} e^{-bv^2}e^{-bw^2}I_0(2bv w)dv\\&\quad =2(b-a-\varepsilon )\int _{\frac{b}{b-a-\varepsilon }w+\delta ^{-1}}^\infty v e^{(a+\varepsilon -b)v^2}I_0(2bv w)e^{\frac{(bw)^2}{a+\varepsilon -b}}dv \frac{b}{b-a-\varepsilon }e^{\frac{(a+\varepsilon )b}{b-a-\varepsilon }w^2}\\&\quad \le e^{\frac{-(b-a-\varepsilon )}{4\delta ^2}}\frac{b}{b-a-\varepsilon }e^{\frac{(a+\varepsilon )b}{b-a-\varepsilon }w^2} \le \delta \frac{b}{b-a-\varepsilon }e^{\frac{(a+\varepsilon )b}{b-a-\varepsilon }w^2}, \end{aligned}$$

where we apply (6.11) in the first step in the third line and take \(\delta \ll 1\) in the last step of the third line. \(\square \)

Lemma 19

If \(0<\frac{\theta }{4}<\rho \), if \(0<{\tilde{\rho }}< \rho - \frac{\theta }{4}\), \(0\le \lambda t< \theta \),

$$\begin{aligned} {\mathbf {k}}_{ \varrho }(v,u) \frac{e^{{\theta } |v|^2}}{e^{\mathcal {\theta } |u|^2}}\frac{e^{\lambda t\langle u\rangle }}{e^{\lambda t\langle v\rangle }} \lesssim {\mathbf {k}}_{{\tilde{\varrho }}}(v,u) . \end{aligned}$$
(6.20)

Proof

When \(\langle u \rangle -\langle v\rangle \le 1\),

$$\begin{aligned} \frac{e^{\lambda s\langle u\rangle }}{e^{\lambda s\langle v\rangle }}\le e^{\lambda s}. \end{aligned}$$

When \(\langle u\rangle -\langle v\rangle \ge 1\),

$$\begin{aligned} \langle u\rangle ^2-\langle v\rangle ^2=(\langle u\rangle -\langle v\rangle )(\langle u\rangle +\langle v\rangle )\ge \langle u\rangle -\langle v\rangle . \end{aligned}$$

Thus by \(\langle u\rangle ^2=|u|^2+1\),

$$\begin{aligned} \frac{e^{\lambda s\langle u\rangle }}{e^{\lambda s\langle v\rangle }}\lesssim 1+\frac{e^{\lambda s | u|^2 }}{e^{\lambda s | v|^2}}. \end{aligned}$$

Note

$$\begin{aligned} \begin{aligned} {\mathbf {k}}_{ \varrho }(v,u) \frac{e^{\vartheta |v|^2}}{e^{\vartheta |u|^2}} = \frac{1}{|v-u| } \exp \left\{ - {\varrho } |v-u|^{2} - {\varrho } \frac{ ||v|^2-|u|^2 |^2}{|v-u|^2} + \vartheta |v|^2 - \vartheta |u|^2 \right\} . \end{aligned} \end{aligned}$$

Let \(v-u=\eta \) and \(u=v-\eta \). Then the exponent equals

$$\begin{aligned}&- \varrho |\eta |^{2}-\varrho \frac{||\eta |^{2}-2v\cdot \eta |^{2}}{ |\eta |^{2}}-\vartheta \{|v-\eta |^{2}-|v|^{2}\}-\lambda t \{|v|-|v-\eta |\} \\&\quad =-2 \varrho |\eta |^{2}+ 4 \varrho v\cdot \eta - 4 \varrho \frac{|v\cdot \eta |^{2}}{|\eta |^{2}}-\vartheta \{|\eta |^{2}-2v\cdot \eta \} \\&\quad =(-2 \varrho -\vartheta )|\eta |^{2}+(4 \varrho +2\vartheta )v\cdot \eta - 4 \varrho \frac{\{v\cdot \eta \}^{2}}{|\eta |^{2}}. \end{aligned}$$

If \(0<\vartheta <4 \varrho \) then the discriminant of the above quadratic form of \(|\eta |\) and \(\frac{v\cdot \eta }{|\eta |}\) is

$$\begin{aligned} (4 \varrho +2\vartheta )^{2}-4 (-2 \varrho -\vartheta )(- 4 \varrho ) =4\vartheta ^{2}- 16 \varrho \vartheta <0. \end{aligned}$$

Hence, the quadratic form is negative definite. We thus have, for \( 0<{\tilde{\varrho }}< \varrho - \frac{\vartheta }{4} \), the following perturbed quadratic form is still negative definite

$$\begin{aligned} -(\varrho - {\tilde{\varrho }})|\eta |^{2}-(\varrho - {\tilde{\varrho }})\frac{||\eta |^{2}-2v\cdot \eta |^{2}}{|\eta |^{2}}-\vartheta \{|\eta |^{2}-2v\cdot \eta \} \le 0. \end{aligned}$$

For

$$\begin{aligned}&{\mathbf {k}}_{ \varrho }(v,u) \frac{e^{\vartheta |v|^2}}{e^{\vartheta |u|^2}}\frac{e^{\lambda t\langle u\rangle ^2}}{e^{\lambda t |v|^2}} \\&\quad = \frac{1}{|v-u| } \exp \left\{ - {\varrho } |v-u|^{2} - {\varrho } \frac{ ||v|^2-|u|^2 |^2}{|v-u|^2} + (\theta -\lambda t) |v|^2 - (\theta -\lambda t) |u|^2 \right\} . \end{aligned}$$

We just need to replace \(\theta \) by \(\theta -\lambda t\) in the previous computation. By \(\lambda t\ll \theta \),

$$\begin{aligned} -(\varrho - {\tilde{\varrho }})|\eta |^{2}-(\varrho - {\tilde{\varrho }})\frac{||\eta |^{2}-2v\cdot \eta |^{2}}{|\eta |^{2}}-(\theta -\lambda t) \{|\eta |^{2}-2v\cdot \eta \} \le 0. \end{aligned}$$

Therefore, we conclude the lemma. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Kim, C. & Li, Q. Local Well-Posedness of Vlasov–Poisson–Boltzmann Equation with Generalized Diffuse Boundary Condition. J Stat Phys 179, 535–631 (2020). https://doi.org/10.1007/s10955-020-02545-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-020-02545-9

Keywords

Navigation