Skip to main content
Log in

Microscopic Foundations of Kinetic Plasma Theory: The Relativistic Vlasov–Maxwell Equations and Their Radiation-Reaction-Corrected Generalization

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

It is argued that the relativistic Vlasov–Maxwell equations of the kinetic theory of plasma approximately describe a relativistic system of N charged point particles interacting with the electromagnetic Maxwell fields in a Bopp–Landé–Thomas–Podolsky (BLTP) vacuum, provided the microscopic dynamics lasts long enough. The purpose of this work is not to supply an entirely rigorous vindication, but to lay down a conceptual road map for the microscopic foundations of the kinetic theory of special-relativistic plasma, and to emphasize that a rigorous derivation seems feasible. Rather than working with a BBGKY-type hierarchy of n-point marginal probability measures, the approach proposed in this paper works with the distributional PDE of the actual empirical 1-point measure, which involves the actual empirical 2-point measure in a convolution term. The approximation of the empirical 1-point measure by a continuum density, and of the empirical 2-point measure by a (tensor) product of this continuum density with itself, yields a finite-N Vlasov-like set of kinetic equations which includes radiation-reaction and nontrivial finite-N corrections to the Vlasov–Maxwell–BLTP model. The finite-N corrections formally vanish in a mathematical scaling limit \(N\rightarrow \infty \) in which charges \(\propto 1/\surd {N}\). The radiation-reaction term vanishes in this limit, too. The subsequent formal limit sending Bopp’s parameter \(\varkappa \rightarrow \infty \) yields the Vlasov–Maxwell model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Of historical interest, perhaps, is that Vlasov himself considered the relativistic Vlasov theory as more fundamental [104]. Needless to say that his view never caught on.

References

  1. Balescu, R.: Statistical Mechanics of Charged Particles. Interscience, New York (1963)

    MATH  Google Scholar 

  2. Balescu, R.: Equilibrium and Nonequilibrium Statistical Mechanics. Wiley, New York (1975)

    MATH  Google Scholar 

  3. Bardos, C., Besse, N., Nguyen, T.T.: Onsager type conjecture and renormalized solutions for the relativistic Vlasov–Maxwell system, preprint, 25 pp. arXiv:1903.04878 (2019)

  4. Bauer, S.: A non-relativistic model of plasma physics containing a radiation reation term. Kinet. Relat. Models 11, 25–42 (2018)

    MathSciNet  MATH  Google Scholar 

  5. Bernstein, J.: Kinetic Theory in the Expanding Universe. Cambridge University Press, Cambridge (1988)

    MATH  Google Scholar 

  6. Bonheure, D., D’Avenia, P., Pomponio, A.: On the electrostatic Born-Infeld equation with extended charges. Commun. Math. Phys. 346, 877–906 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Bopp, F.: Eine lineare Theorie des Elektrons. Ann. Phys. 430, 345–384 (1940)

    MathSciNet  MATH  Google Scholar 

  8. Bopp, F.: Lineare Theorie des Elektrons. II. Ann. Phys. 434, 573–608 (1943)

    MathSciNet  MATH  Google Scholar 

  9. Born, M., Infeld, L.: Foundation of the new field theory. Proc. R. Soc. Lond. A 144, 425–451 (1934)

    ADS  MATH  Google Scholar 

  10. Bouchut, F., Golse, F., Pallard, C.: Nonresonant smoothing for coupled wave + transport equations and the Vlasov–Maxwell system. In: Dispersive Corrections to Transport Phenomena, IMA Proceedings, Minneapolis (2000)

  11. Bouchut, F., Golse, F., Pallard, C.: Classical solutions and the Glassey-Strauss theorem for the 3D Vlasov-Maxwell System. Arch. Ration. Mech. Anal. 170, 1–15 (2003)

    MathSciNet  MATH  Google Scholar 

  12. Braun, W., Hepp, K.: The Vlasov dynamics and its fluctuations in the \(1/N\) limit of interacting classical particles. Commun. Math. Phys. 56, 101–113 (1977)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Burton, D.-A., Noble, A.: On the entropy of radiation reaction. Phys. Lett. A 378, 1031–1035 (2014)

    ADS  MATH  Google Scholar 

  14. Carley, H.K., Kiessling, M.K.-H., Perlick, V.: On the Schrödinger spectrum of a hydrogen atom with BLTP interactions between electron and proton. Int. J. Mod. Phys. A 34, 1950146 (2019)

    ADS  Google Scholar 

  15. Deckert, D.-A., Hartenstein, V.: On the initial value formulation of classical electrodynamics. J. Phys. A 49, 445202 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Degond, P.: Local existence of solutions of the Vlasov-Maxwell equations and convergence to the Vlasov-Poisson equations for infinite light velocity. Math. Methods Appl. Sci. 8, 533–558 (1986)

    ADS  MathSciNet  MATH  Google Scholar 

  17. “Digital Library of Mathematical Functions,” Nat. Inst. Standards & Tech. (NIST); http://www.dlmf.nist.gov (2018)

  18. DiPerna, R.J., Lions, P.L.: Global weak solutions of Vlasov-Maxwell systems. Commun. Pure Appl. Math. 42, 729–757 (1989)

    MathSciNet  MATH  Google Scholar 

  19. Dirac, P.A.M.: Classical theory of radiating electrons. Proc. R. Soc. A 167, 148–169 (1938)

    ADS  MATH  Google Scholar 

  20. Dobrushin, R.L.: Vlasov equations. Funkts. Anal. Pril. 13(2), 48–58 (1979)

    MATH  Google Scholar 

  21. Dobrushin, R.L.: Vlasov equations. Engl. Transl. Funct. Anal. Appl. 13, 115–123 (1979)

    MATH  Google Scholar 

  22. Ehlers, J.: General relativity and kinetic theory. In: Sachs RK (ed.) General Relativity and Cosmology, Proceedings of the International Enrico Fermi School of Physics, vol. 47, pp. 1–70. Academic Press, New York (1971)

  23. Ehlers, J.: Survey of general relativity theory. In: Israel, W. (ed.) Relativity, Astrophysics and Cosmology. D. Reidel Publ. Co., Amsterdam (1973)

    Google Scholar 

  24. Einstein, A.: Zur Elektrodynamik bewegter Körper. Ann. Phys. 17, 891–921 (1905)

    MATH  Google Scholar 

  25. Einstein, A.: Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig? Ann. Phys. 18, 639–641 (1905)

    Google Scholar 

  26. Elskens, Y., Kiessling, M.K.-H., Ricci, V.: The Vlasov limit for a system of particles which interact with a wave field. Commun. Math. Phys. 285, 673–712 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Feynman, R.P.: A relativistic cut-off for classical electrodynamics. Phys. Rev. 74, 939–946 (1948)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Glassey, R.: The Cauchy Problem in Kinetic Theory. SIAM, Philadelphia (1996)

    MATH  Google Scholar 

  29. Glassey, R., Schaeffer, J.: Global existence for the relativistic Vlasov-Maxwell system with nearly neutral initial data. Commun. Math. Phys. 119, 353–384 (1988)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Glassey, R., Strauss, W.: Singularity formation in a collisionless plasma could occur only at high velocities. Arch. Ration. Mech. Anal. 92, 59–90 (1986)

    MathSciNet  MATH  Google Scholar 

  31. Glassey, R., Strauss, W.: Absence of shocks in an initially dilute collisionless plasma. Commun. Math. Phys. 113, 191–208 (1987)

    ADS  MathSciNet  MATH  Google Scholar 

  32. Glassey, R., Strauss, W.: High velocity particles in a collisionless plasma. Math. Methods Appl. Sci. 9, 46–52 (1987)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Glassey, R., Pankavich, S., Schaeffer, J.: Large time behavior of the relativistic Vlasov-Maxwell system in low space dimension. Diff. Integral Eq. 23, 61–77 (2010)

    MathSciNet  MATH  Google Scholar 

  34. Goldston, R.J., Rutherford, P.H.: Introduction to Plasma Physics. Taylor and Francis, New York (1995)

    MATH  Google Scholar 

  35. Golse, F.: The mean-field limit for a regularized Vlasov-Maxwell dynamics. Commun. Math. Phys. 310, 789–816 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Gratus, J., Perlick, V., Tucker, R.W.: On the self-force in Bopp-Podolsky electrodynamics. J. Phys. A 48, 435401 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Hakim, R.: Introduction to relativistic statistical mechanics—classical and quantum. World Scientific, Singapore (2011)

    MATH  Google Scholar 

  38. Hakim, R., Mangeney, A.: Relativistic kinetic equations including radiation effects. I. Vlasov approximation. J. Math. Phys. 9, 116–130 (1968)

    ADS  MATH  Google Scholar 

  39. Hazeltine, R.D., Waelbroeck, F.L.: The Framework of Plasma Physics. Westview Press, Perseus Group, Cambridge MA (2004)

    Google Scholar 

  40. Hoang, V., Radosz, M.: On the self-force in higher-order electrodynamics, Preprint, 41pp. arXiv:1902.06386 (2019)

  41. Horst, E.: Global solutions of the relativistic Vlasov–Maxwell system of plasma physics, Habilitationsschrift. Ludwig Maximilian Universität, München (1986)

  42. Ichimaru, S.: Basic Principles of Plasma Physics—A Statistical Approach, 2nd edn. Benjamin/Cummings, Reading, MA (1980)

    Google Scholar 

  43. Inglebert, A., Ghizzo, A., Réveillé, T., Del Sarto, D., Bertrand, P., Califano, F.: A multi-stream Vlasov modeling unifying relativistic Weibel-type instabilities. Europhys. Lett. 95, 45002 (2011). https://doi.org/10.1209/0295-5075/95/45002

    Article  ADS  Google Scholar 

  44. Jabin, P.E.: A review of the mean field limits for Vlasov equations. Kinet. Relat. Models 7, 661–711 (2014)

    MathSciNet  MATH  Google Scholar 

  45. Jackson, J.D.: Classical Electrodynamics, 2nd edn. Wiley, New York (1976)

    MATH  Google Scholar 

  46. Janicke, L.: Non-linear electromagnetic waves in a relativistic plasma. J. Plasma Phys. 19, 209–228 (1977)

    ADS  MathSciNet  Google Scholar 

  47. Jeans, J.H.: On the theory of star-streaming and the structure of the universe. Monthly Notices R. Astron. Soc. 76, 70–84 (1915)

    ADS  Google Scholar 

  48. Kiessling, M.K.-H.: Electromagnetic field theory without divergence problems. 1. The Born legacy. J. Stat. Phys. 116, 1057–1122 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  49. Kiessling, M.K.-H.: On the motion of point defects in relativistic field theories, 37 pp. In: “Quantum Field Theory and Gravity. Conceptual and mathematical advances in the search for a unified framework.” (Regensburg, Sept. 28-Oct. 1, 2010), F. Finster, O. Müller, M. Nardmann, J. Tolksdorf, E. Zeidler (orgs. and eds.); Birkäuser, Basel (2012)

  50. Kiessling, M.K.-H.: The microscopic foundations of Vlasov theory for Jellium-like Newtonian \(N\)-body systems. J. Stat. Phys. 155, 1299–1328 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  51. Kiessling, M.K.-H.: On the quasi-linear elliptic PDE \(-\nabla \cdot (\nabla {u}/\sqrt{1-|\nabla {u}|^2}) = 4\pi a_k {s_k}\), in physics and geometry, Commun. Math. Phys. 314, 509–523 (2012); Correction ibid. 364, 825–833 (2018)

  52. Kiessling, M.K.-H.: Force on a point charge source of the classical electromagnetic field. Phys. Rev. D 100, 065012(19) (2019)

    ADS  MathSciNet  Google Scholar 

  53. Kiessling, M.K.-H., Tahvildar-Zadeh, A.S.: On the relativistic Vlasov-Poisson system. Indiana Univ. Math. J. 57, 3177–3207 (2008)

    MathSciNet  MATH  Google Scholar 

  54. Kiessling, M.K.-H., Tahvildar-Zadeh, A.S.: Bopp-Landé-Thomas-Podolsky electrodynamics as initial value problem, in preparation (2020)

  55. Klainerman, S., Staffilani, G.: A new approach to study the Vlasov-Maxwell system. Commun. Pure Appl. Anal. 1, 103–125 (2002)

    MathSciNet  MATH  Google Scholar 

  56. Klimontovich, Yu.: The Kinetic Theory of Electromagnetic Processes. Springer, New York (1983)

    Google Scholar 

  57. Krall, N., Trivelpiece, A.: Principles of Plasma Physics. Mc Graw Hill, New York (1964)

    Google Scholar 

  58. Kunze, M., Rendall, A.D.: The Vlasov-Poisson system with radiation damping. Ann. H. Poincaré 2, 857–886 (2001)

    MathSciNet  MATH  Google Scholar 

  59. Kunze, M., Rendall, A.D.: Simplified models of electromagnetic and gravitational radiation damping. Class. Quantum Gravity 18, 3573–3587 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  60. Kuzmenkov, L.S.: The Bogolyubov hierarchy of equations for relativistic systems. Radiation damping of waves in a plasma. Dokl. Akad. Nauk SSSR 241, 322–325 (1978)

    ADS  MathSciNet  Google Scholar 

  61. Lancellotti, C.: On the fluctuations about the Vlasov limit for \(N\)-particle systems with mean-field interactions. J. Stat. Phys. 136, 643–665 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  62. Landau, L.D., Lifshitz, E.: The Classical Theory of Fields—A Course on Theoretical Physics 2. Pergamon Press (First English edition) (1951)

  63. Landé, A.: Finite self-energies in radiation theory. Part I. Phys. Rev. 60, 121–126 (1941)

    ADS  MATH  Google Scholar 

  64. Landé, A., Thomas, L.H.: Finite self-energies in radiation theory. Part II. Phys. Rev 60, 514–523 (1941)

    ADS  MATH  Google Scholar 

  65. Lazarovici, D., Pickl, P.: A mean field limit for the Vlasov-Poisson system. Arch. Ration. Mech. Anal. 225, 1201–1231 (2017)

    MathSciNet  MATH  Google Scholar 

  66. Liénard, A.: Champ électrique et magnétique produit par une charge concentrée en un point et animée d’un mouvement quelconque, L’ Éclairage électrique 16 p.5; ibid. p. 53; ibid. p. 106 (1898)

  67. Lifshitz, E.M., Pitaevskii, L.P.: Physical Kinetics—A Course on Theoretical Physics 10, transl. Sykes, J.B., Franklin, R.N., Pergamon Press, Oxford (1981)

  68. Lorentz, H.A.: La théorie électromagnétique de Maxwell et son application aux corps mouvants. Arch. Néerl. Sci. Exactes Nat. 25, 363–552 (1892)

    MATH  Google Scholar 

  69. Lorentz, H.A.: Weiterbildung der Maxwell’schen Theorie: Elektronentheorie, Encyklopädie d. Mathematischen Wissenschaften, Band \({\bf V}\), Teil 2, Art. 14, pp. 145–280 (1904)

  70. Lorentz, H.A.: The Theory of Electrons and Its Applications to the Phenomena of Light and Radiant Heat, reprint of the 2nd ed., 1915, by Dover, New York (1952)

  71. Luchina, A.A., Vlasov, A.A.: chpt. II, sect. 12 in ref. [Vla61]

  72. Montgomery, D.C., Tidman, D.A.: Plasma Kinetic Theory. McGraw-Hill, New York (1964)

    MATH  Google Scholar 

  73. Mouhot, C., Villani, C.: On Landau damping. Acta Math. 207, 29–201 (2011)

    MathSciNet  MATH  Google Scholar 

  74. Neukirch, T.: Equilibria of charge-separated rigidly rotating relativistic magnetospheres. Astron. Astrophys. 274, 319–329 (1993)

    ADS  Google Scholar 

  75. Neunzert, H.: An introduction to the nonlinear Boltzmann–Vlasov equation. In: Kinetic Theories and the Boltzmann Equation, Montecatini, 1981, Proceedings, Lecture Notes in Mathematics, vol. 1048, pp. 60–110. Springer, Berlin (1985)

  76. Neunzert, H., Wick, J.: Die Approximation der Lösung von Integro-Differentialgleichungen durch endliche Punktmengen. In: Numerische Behandlung nichtlinearer Integrodifferential- und Differentialgleichungen, Tagung, Math. Forschungsinst., Oberwolfach, 1973, Lecture Notes in Mathematics, vol. 395, 275–290. Springer, Berlin (1974)

  77. Nicholson, D.R.: Introduction to Plasma Theory. Wiley, New York (1983)

    Google Scholar 

  78. Noble, A., Burton, D.-A., Gratus, J., Jaroszynski, D.A.: On the entropy of radiation reaction. J. Math. Phys. 54, 043101 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  79. Otto, A., Schindler, K.: An energy principle for two-dimensional collisionless relativistic plasmas. Plasma Phys. Control. Fus. 26, 1525–1533 (1984)

    ADS  Google Scholar 

  80. Palmroth, M., Ganse, U., Pfau-Kempf, Y., Battarbee, M., Turc, L., Brito, T., Grandin, M., Hoilijoki, S., Sandroos, A., von Alfthan, S.: Vlasov methods in space physics and astrophysics. Living Rev. Comp. Astrophys. 4, 1 (2018)

    ADS  Google Scholar 

  81. Pfaffelmoser, K.: Globale klassische Lösungen des dreidimensionalen Vlasov–Poisson-systems. Doctoral Dissertation, Ludwig Maximilian Universität, München (1989)

  82. Pfaffelmoser, K.: Global classical solutions of the Vlasov-Poisson system in three dimensions with generic initial data. J. Diff. Eq. 95, 281–303 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  83. Piel, A.: Plasma physics—an introduction to laboratory, space, and fusion plasmas. Springer, Berlin (2010)

    MATH  Google Scholar 

  84. Podolsky, B.: A generalized electrodynamics. Part I: Non-quantum. Phys. Rev. 62, 68–71 (1942)

    ADS  MathSciNet  Google Scholar 

  85. Podolsky, B., Schwed, P.: A review of generalized electrodynamics. Rev. Mod. Phys. 20, 40–50 (1948)

    ADS  MathSciNet  Google Scholar 

  86. Poincaré, H.: Sur la dynamique de l’électron. C. R. Acad. Sc. Paris 140, 1504–1508 (1905)

    MATH  Google Scholar 

  87. Poincaré, H.: Sur la dynamique de l’électron. Rendiconti del Circolo Matematico di Palermo 21, 129–176 (1906)

    MATH  Google Scholar 

  88. Rein, G.: Generic global solutions of the relativistic Vlasov-Maxwell system of plasma physics. Commun. Math. Phys. 135, 41–78 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  89. Rohrlich, F.: Classical Charged Particles, 2nd edn. Addison Wesley, Redwood City, CA (1990)

    MATH  Google Scholar 

  90. Rostoker, N., Rosenbluth, M.: Test particles in a completely ionized plasma. Phys. Fluids 3, 1–14 (1960)

    ADS  MathSciNet  MATH  Google Scholar 

  91. Schaeffer, J.: The classical limit of the relativistic Vlasov-Maxwell system. Commun. Math. Phys. 104, 403–421 (1986)

    ADS  MathSciNet  MATH  Google Scholar 

  92. Schaeffer, J.: Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions. Commun. PDE 16, 1313–1335 (1991)

    MathSciNet  MATH  Google Scholar 

  93. Schindler, K.: Physics of Space Plasma Activity. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  94. Schindler, K., Janicke, L.: Large amplitude electromagnetic waves in hot relativistic plasmas. Phys. Lett. 45 A, 91–92 (1973)

    ADS  Google Scholar 

  95. Schlickeiser, R.: Cosmic Ray Astrophysics. Springer, Berlin (2002)

    Google Scholar 

  96. Schlickeiser, R., Kneller, M.: Relativistic kinetic theory of waves in isotropic plasmas. J. Plasma Phys. 57, 709–740 (1997)

    ADS  Google Scholar 

  97. Serfaty, S.: Mean-field limit for Coulomb flows, Preprint, 30pp. arXiv:1803.08345 [math.AP]

  98. Somov, B.V.: Plasma Astrophysics, Part I—Fundamentals and Practice. Springer, New York (2013)

    MATH  Google Scholar 

  99. Spohn, H.: Large Scale Dynamics of Interacting Particles, Texts and Monographs in Physics. Springer, Berlin (1991)

    Google Scholar 

  100. Spohn, H.: Dynamics of Charged Particles and Their Radiation Fields. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  101. Velázquez, J.J.L., Winter, R.: The two-particle correlation function for systems with long-range interactions. J. Stat. Phys. 173, 1–41 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  102. Vereshchagin, G.V., Aksenov, A.G.: Relativistic Kinetic Theory—With Applications in Astrophysics and Cosmology. Cambridge University Press, Cambridge (2017)

    MATH  Google Scholar 

  103. Vlasov, A.A.: On vibrational properties of a gas of electrons. Zh.E.T.F. 8, 291–318 (1938)

    Google Scholar 

  104. Vlasov, A.A.: Many-particle theory and its application to plasma. In: Russian monographs and texts on advanced mathematics and physics, vol. 7. Gordon and Breach, New York (1961); originally published by: State Publishing House for Technical-Theoretical Literature, Moscow and Leningrad (1950)

  105. Wiechert, E.: Elektrodynamische Elementargesetze. Arch. Néerl. Sci. Exactes Nat. 5, 549–573 (1900)

    MATH  Google Scholar 

  106. Young, B.O.J.: On linear Landau damping for relativistic plasmas via Gevrey regularity. J. Diff. Eq. 259, 3233–3273 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  107. Young, B.O.J.: Landau damping in relativistic plasmas. J. Math. Phys. 57, 021502 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Holly Carley, Markus Kunze, and Shadi Tahvildar-Zadeh for helpful discussions. They also thank the two referees and the editor, Herbert Spohn, for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K.-H. Kiessling.

Additional information

Communicated by Herbert Spohn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A The Radiation-Reaction Force Term

In this appendix we collect the pertinent formulas needed to compute the radiation-reaction force terms.

We write \(\varvec{\Pi }^{\mathrm{field}}_{\alpha ,n}(t,{\varvec{{ s}} })\) as a sum of three terms, sorted by their singularities,

$$\begin{aligned} \varvec{\Pi }^{\mathrm{field}}_{\alpha ,n}(t,{\varvec{{ s}} }) = \frac{e_\alpha ^2}{16\pi ^2 c} \;{\sum \limits _{k=0}^2}\; \frac{\varvec{\pi }^{[k]}_{\varvec{\xi }_n^\alpha }(t,{\varvec{{ s}} })}{\big |{{\varvec{{ s}} }-{\varvec{{ q}} }_n\big (t^{\mathrm {ret}}_{\varvec{\xi }_n^\alpha } (t,{\varvec{{ s}} })\big )}\big |^k}, \end{aligned}$$
(A.1)

where the suffix \(\varvec{\xi }_n^\alpha \) indicates the vector function \(t\mapsto \varvec{\xi }_n^\alpha (t) \equiv ({\varvec{{ q}} }_n^\alpha ,{\varvec{{ v}} }_n^\alpha ,\varvec{{ a}} _n^\alpha )(t)\). Here, and now dropping \({}_n\) and \({}^\alpha \) indices,

$$\begin{aligned} \varvec{\pi }_{\varvec{\xi }}^{[0]}(t,{\varvec{{ s}} })&= - \varkappa ^4 \frac{1}{4}\left[ {\textstyle { \frac{ \left( {{\varvec{{ n}} }({\varvec{{ q}} },{\varvec{{ s}} })}_{}-\frac{1}{c}{{\varvec{{ v}} }}\right) {\varvec{\times }}\left( { \frac{1}{c}{{\varvec{{ v}} }}{\varvec{\times }}{{\varvec{{ n}} }({\varvec{{ q}} },{\varvec{{ s}} })}_{} }\right) }{ \bigl ({1-\frac{1}{c} {{\varvec{{ v}} }}\cdot {\varvec{{ n}} }({\varvec{{ q}} },{\varvec{{ s}} })}\bigr )^{\!2} } }}\right] _{\mathrm {ret}}\nonumber \\&\quad + \varkappa ^4\frac{1}{2}\left[ {\textstyle { \frac{ {{\varvec{{ n}} }({\varvec{{ q}} },{\varvec{{ s}} })}_{}-\frac{1}{c}{{\varvec{{ v}} }}}{ {1-\frac{1}{c} {{\varvec{{ v}} }}\cdot {\varvec{{ n}} }({\varvec{{ q}} },{\varvec{{ s}} })} } }}\right] _{\mathrm {ret}} {\varvec{\times }}\! \int _{-\infty }^{t^\mathrm {ret}_{\varvec{\xi }}(t,{\varvec{{ s}} })}\!\!\!\! {{\varvec{{ v}} }(t')}{\varvec{\times }}\mathbf {K}_{\varvec{\xi }}(t',t,{\varvec{{ s}} })\mathrm {d}{t'}\nonumber \\&\quad - \varkappa ^4\frac{1}{2}\left[ {\textstyle {\frac{ \frac{1}{c}{{\varvec{{ v}} }}{\varvec{\times }}{\varvec{{ n}} }({\varvec{{ q}} },{\varvec{{ s}} })}{ 1-\frac{1}{c} {{\varvec{{ v}} }}\cdot {\varvec{{ n}} }({\varvec{{ q}} },{\varvec{{ s}} })}}}\right] _{\mathrm {ret}} {\varvec{\times }}\int _{-\infty }^{t^\mathrm {ret}_{\varvec{\xi }}(t,{\varvec{{ s}} })}\!\!\!\! c\mathbf {K}_{\varvec{\xi }}(t',t,{\varvec{{ s}} })\mathrm {d}{t'}\nonumber \\&\quad - \varkappa ^4 \int _{-\infty }^{t^\mathrm {ret}_{\varvec{\xi }}(t,{\varvec{{ s}} })} \!\!\!\! c\mathbf {K}_{\varvec{\xi }}(t',t,{\varvec{{ s}} })\mathrm {d}{t'} {\varvec{\times }}\int _{-\infty }^{t^\mathrm {ret}_{\varvec{\xi }}(t,{\varvec{{ s}} })} \!\!\!\! {{\varvec{{ v}} }(t')}{\varvec{\times }}\mathbf {K}_{\varvec{\xi }}(t',t,{\varvec{{ s}} })\mathrm {d}{t'}\nonumber \\&\quad - \varkappa ^4 c\int _{-\infty }^{t^\mathrm {ret}_{\varvec{\xi }}(t,{\varvec{{ s}} })} \!\!\!\! \mathrm {K}_{\varvec{\xi }}(t',t,{\varvec{{ s}} })\mathrm {d}{t'} \int _{-\infty }^{t^\mathrm {ret}_{\varvec{\xi }}(t,{\varvec{{ s}} })} \!\!\!\!\mathrm {K}_{\varvec{\xi }}(t',t,{\varvec{{ s}} }) {{\varvec{{ v}} }}(t')\mathrm {d}{t'} \end{aligned}$$
(A.2)
$$\begin{aligned} \varvec{\pi }_{\varvec{\xi }}^{[1]}(t,{\varvec{{ s}} })&= - \varkappa ^2 \left[ {\textstyle { { {{\varvec{{ n}} }({\varvec{{ q}} },{\varvec{{ s}} })}\frac{\left( {{\varvec{{ n}} }({\varvec{{ q}} },{\varvec{{ s}} })}{\varvec{\times }}[{ \left( {{\varvec{{ n}} }({\varvec{{ q}} },{\varvec{{ s}} })}-\frac{1}{c}{{\varvec{{ v}} }}\right) {\varvec{\times }}\varvec{{ a}} }]\right) \cdot \frac{1}{c}{\varvec{{ v}} }}{ c^2 \bigl ({1-\frac{1}{c} {{\varvec{{ v}} }}\cdot {\varvec{{ n}} }({\varvec{{ q}} },{\varvec{{ s}} })}\bigr )^{\!4} } } + {{\varvec{{ n}} }({\varvec{{ q}} },{\varvec{{ s}} })}_{}{\varvec{\times }}\frac{ \left( {{\varvec{{ n}} }({\varvec{{ q}} },{\varvec{{ s}} })}_{}-\frac{1}{c}{{\varvec{{ v}} }}\right) {\varvec{\times }}\varvec{{ a}} }{ 2 c^2 \bigl ({1-\frac{1}{c} {{\varvec{{ v}} }}\cdot {\varvec{{ n}} }({\varvec{{ q}} },{\varvec{{ s}} })}\bigr )^{\!3} } }}\right] _{\mathrm {ret}}\nonumber \\&\quad - \varkappa ^2\left[ {\textstyle { {{\varvec{{ n}} }({\varvec{{ q}} },{\varvec{{ s}} })}_{}{\varvec{\times }}\frac{ \left( {{\varvec{{ n}} }({\varvec{{ q}} },{\varvec{{ s}} })}_{}-\frac{1}{c}{{\varvec{{ v}} }}\right) {\varvec{\times }}\varvec{{ a}} }{ c^2 \bigl ({1-\frac{1}{c} {{\varvec{{ v}} }}\cdot {\varvec{{ n}} }({\varvec{{ q}} },{\varvec{{ s}} })}\bigr )^{\!3} } }}\right] _{\mathrm {ret}} \!\! {\varvec{\times }}\! \int _{-\infty }^{t^\mathrm {ret}_{\varvec{\xi }}(t,{\varvec{{ s}} })}\!\!\!\! {{\varvec{{ v}} }(t')}{\varvec{\times }}\mathbf {K}_{\varvec{\xi }}(t',t,{\varvec{{ s}} })\mathrm {d}{t'}\nonumber \\&\quad + \varkappa ^2\left[ {\varvec{{ n}} }({\varvec{{ q}} },{\varvec{{ s}} }){\varvec{\times }}\biggl [{\textstyle {{\varvec{{ n}} }({\varvec{{ q}} },{\varvec{{ s}} }){\varvec{\times }}\frac{\left( {{\varvec{{ n}} }({\varvec{{ q}} },{\varvec{{ s}} })}_{}-\frac{1}{c}{{\varvec{{ v}} }}\right) {\varvec{\times }}\varvec{{ a}} }{ c^2\bigl ({1-\frac{1}{c} {{\varvec{{ v}} }}\cdot {\varvec{{ n}} }({\varvec{{ q}} },{\varvec{{ s}} })}\bigr )^{\!3} } }}\biggr ]\right] _{\mathrm {ret}} \!\!\! {\varvec{\times }}\! \int _{-\infty }^{t^\mathrm {ret}_{\varvec{\xi }}(t,{\varvec{{ s}} })} \!\!\!\! c\mathbf {K}_{\varvec{\xi }}(t',t,{\varvec{{ s}} })\mathrm {d}{t'}\nonumber \\&\quad + \varkappa ^3 \left[ \textstyle \frac{1}{{1-\frac{1}{c} {{\varvec{{ v}} }}\cdot {\varvec{{ n}} }({\varvec{{ q}} },{\varvec{{ s}} })} }\right] _{\mathrm {ret}} \int _{-\infty }^{t^\mathrm {ret}_{\varvec{\xi }}(t,{\varvec{{ s}} })}\!\!\!\! \mathrm {K}_{\varvec{\xi }}(t',t,{\varvec{{ s}} })\left[ {{\varvec{{ v}} }} ({t^\mathrm {ret}_{\varvec{\xi }}(t,{\varvec{{ s}} })}))+{{\varvec{{ v}} }}(t')\right] \mathrm {d}{t'} \end{aligned}$$
(A.3)
$$\begin{aligned} \varvec{\pi }_{\varvec{\xi }}^{[2]}(t,s)&= - \varkappa ^2 \left[ \textstyle \frac{1}{\bigl ({1-\frac{1}{c} {{\varvec{{ v}} }}\cdot {\varvec{{ n}} }({\varvec{{ q}} },{\varvec{{ s}} })} \bigr )^{\!2} }\frac{1}{c}{{\varvec{{ v}} }}{- \Big [\!{1-\tfrac{1}{c^2}\big |{\varvec{{ v}} }\big |^2}\!\Big ] \frac{ \left( {{\varvec{{ n}} }({\varvec{{ q}} },{\varvec{{ s}} })}_{}-\frac{1}{c}{{\varvec{{ v}} }}\right) {\varvec{\times }}\left( \frac{1}{c}{\varvec{{ v}} }{\varvec{\times }}{\varvec{{ n}} }({\varvec{{ q}} },{\varvec{{ s}} })\right) }{ \bigl ({1-\frac{1}{c} {{\varvec{{ v}} }}\cdot {\varvec{{ n}} }({\varvec{{ q}} },{\varvec{{ s}} })}\bigr )^4 }} \right] _{\mathrm {ret}} \nonumber \\&\quad +\varkappa ^2 \left[ \Big [\!{1-\tfrac{1}{c^2}\big |{\varvec{{ v}} }\big |^2}\!\Big ]{\varvec{{ n}} }({\varvec{{ q}} },{\varvec{{ s}} }){\varvec{\times }}{\textstyle { \frac{ {{\varvec{{ n}} }({\varvec{{ q}} },{\varvec{{ s}} })}_{}-\frac{1}{c}{{\varvec{{ v}} }} }{ \bigl ({1-\frac{1}{c} {{\varvec{{ v}} }}\cdot {\varvec{{ n}} }({\varvec{{ q}} },{\varvec{{ s}} })}\bigr )^{\!3} } }}\right] _{\mathrm {ret}} {\varvec{\times }}\int _{-\infty }^{t^\mathrm {ret}_{\varvec{\xi }}(t,{\varvec{{ s}} })} \!\!\!\!c\mathbf {K}_{\varvec{\xi }}(t',t,{\varvec{{ s}} })\mathrm {d}{t'} \nonumber \\&\quad - \varkappa ^2\left[ \Big [\!{1-\tfrac{1}{c^2}\big |{\varvec{{ v}} }\big |^2}\!\Big ] {\textstyle { \frac{ {{\varvec{{ n}} }({\varvec{{ q}} },{\varvec{{ s}} })}_{}-\frac{1}{c}{{\varvec{{ v}} }} }{ \bigl ({1-\frac{1}{c} {{\varvec{{ v}} }}\cdot {\varvec{{ n}} }({\varvec{{ q}} },{\varvec{{ s}} })}\bigr )^{\!3} } }}\right] _{\mathrm {ret}} {\varvec{\times }}\! \int _{-\infty }^{t^\mathrm {ret}_{\varvec{\xi }}(t,{\varvec{{ s}} })} \!\!\!\! {{\varvec{{ v}} }(t')}{\varvec{\times }}\mathbf {K}_{\varvec{\xi }}(t',t,{\varvec{{ s}} })\mathrm {d}{t'} , \end{aligned}$$
(A.4)

with the abbreviations \(\mathrm {K}_{\varvec{\xi }}, \mathbf {K}_{\varvec{\xi }}\) defined as in (2.19) and (2.24), and where \(\big |_\mathrm {ret}\) means that \({\varvec{{ q}} }(\tilde{t})\), \({\varvec{{ v}} }(\tilde{t})\), and \(\varvec{{ a}} (\tilde{t})\) are evaluated with \(\tilde{t} = {t^\mathrm {ret}_{\varvec{\xi }}}(t,{\varvec{{ s}} })\).

With \(\overline{\varvec{\xi }}\equiv ({\overline{\varvec{{ q}} }},{\varvec{{ v}} }_{\!0},\varvec{{ 0}} )\), we thus have

$$\begin{aligned}&{\displaystyle \int _{B_{ct}({\varvec{{ q}} }_n(0))}\!\! \left( \varvec{\Pi }^{\mathrm{field}}_{\alpha ,n}(t,{\varvec{{ s}} }) -{\varvec{\Pi }}^{\mathrm{field}}_{\alpha ,n}(0,{\varvec{{ s}} }-{\overline{\varvec{{ q}} }}_n(t)) \right) \!\mathrm {d}^3{s}}\nonumber \\&\quad = \frac{e_\alpha ^2}{16\pi ^2 c} \;{\sum \limits _{k=0}^2}\; {\displaystyle \int _{B_{ct}({\varvec{{ q}} }_0)}\!\!\left( \tfrac{\textstyle \varvec{\pi }_{\varvec{\xi }_n^\alpha }^{[k]} (t,{\varvec{{ s}} })}{\left| {\varvec{{ s}} }-{\varvec{{ q}} }_n\big (t^{\mathrm {ret}}_{\varvec{\xi }_n}(t,{\varvec{{ s}} })\big ) \right| ^k}- \tfrac{\textstyle \varvec{\pi }_{\overline{\varvec{\xi }}_n^\alpha }^{[k]} (t,{\varvec{{ s}} })}{\left| {\varvec{{ s}} }-{\overline{\varvec{{ q}} }}_n\big (t^{\mathrm {ret}}_{{\overline{\varvec{{ q}} }}_n}(t,{\varvec{{ s}} })\big ) \right| ^k} \right) \mathrm {d}^3{s}}. \end{aligned}$$
(A.5)

Note that the acceleration \(t\mapsto \varvec{{ a}} _n(t)\) only features linearly, in the \(k=1\) term.

To carry out the integrations at r.h.s. (A.5) we in [54] switch to “retarded spherical co-ordinates” with the colatitude \(\vartheta \) defined with respect to \({\varvec{{ s}} }- {\varvec{{ q}} }(t^{\mathrm {r}})\). Let \(\mathrm {d}\omega _r({\varvec{{ s}} })\) denote the uniform measure on \(\partial B_r\left( {\varvec{{ q}} }(t^{\mathrm {r}})\right) \). For any \({\mathfrak {C}}^{1,1}\) map \(t^{\mathrm {r}}\mapsto {\varvec{{ q}} }(t^{\mathrm {r}})\) with \({{\dot{{\varvec{{ q}} }}}}(t^{\mathrm {r}})=:{\varvec{{ v}} }(t^{\mathrm {r}})\) we then have

$$\begin{aligned} \mathrm {d}^3{s} = \frac{\mathrm {d}{\omega _r({\varvec{{ s}} })}}{\big \vert \partial _{{\varvec{{ s}} }}{\left| {\varvec{{ s}} }-{\varvec{{ q}} }(t^{\mathrm {r}}) \right| } \big \vert } \biggl .\biggr |_{\partial B_r\left( {\varvec{{ q}} }(t^{\mathrm {r}})\right) }^{}\mathrm {d}{r} = \left( 1-\tfrac{1}{c}\big \vert {\varvec{{ v}} }(t-\tfrac{1}{c} r) \big \vert \cos \vartheta \right) r^2\sin \vartheta \mathrm {d}{\vartheta }\mathrm {d}{\varphi }\mathrm {d}{r}. \end{aligned}$$
(A.6)

This gives us

$$\begin{aligned}&\int _{B_{ct}({\varvec{{ q}} }_0)} \biggl [ \tfrac{\textstyle \varvec{\pi }_{\varvec{\xi }_n}^{[k]} (t,{\varvec{{ s}} })}{\left| {\varvec{{ s}} }-{\varvec{{ q}} }_n\big (t^{\mathrm {ret}}_{\varvec{\xi }_n}(t,{\varvec{{ s}} })\big ) \right| ^k}- \tfrac{\textstyle \varvec{\pi }_{\varvec{\xi }_n^\circ }^{[k]} (t,{\varvec{{ s}} })}{\left| {\varvec{{ s}} }-{\overline{\varvec{{ q}} }}_n\big (t^{\mathrm {ret}}_{{\overline{\varvec{{ q}} }}_n}(t,{\varvec{{ s}} })\big ) \right| ^k} \biggr ]\mathrm {d}^3{s} \nonumber \\&\quad = \int _0^{ct}\! \int _0^{2\pi }\!\! \int _0^{\pi }\! \Bigl [\left( 1-\tfrac{1}{c}\big \vert {\varvec{{ v}} }_n^{}(t-\tfrac{1}{c} r) \big \vert \cos \vartheta \right) \varvec{\pi }_{\varvec{\xi }_n}^{[k]}\big (t,{\varvec{{ s}} }_{\varvec{\xi }_n} (r,\vartheta ,\varphi )\big )\biggr .\nonumber \\&\qquad -\biggl . \left( 1-\tfrac{1}{c}\big \vert {\varvec{{ v}} }_{\!n}(0) \big \vert \cos \vartheta \right) \varvec{\pi }_{\varvec{\xi }_n^\circ }^{[k]}\big (t,{\varvec{{ s}} }_{{\overline{\varvec{{ q}} }}_n} (r,\vartheta ,\varphi )\big )\Bigr ] \sin \vartheta \mathrm {d}{\vartheta }\mathrm {d}{\varphi }\, r^{2-k} \mathrm {d}{r} \,. \end{aligned}$$
(A.7)

Next we register the following important facts about the angular integrations over the spheres \(\partial B_r\left( {\varvec{{ q}} }(t^{\mathrm {r}})\right) \) (where \({\varvec{{ q}} }\) stands for either \({\varvec{{ q}} }_n\) or \({\overline{\varvec{{ q}} }}_n\); \({\varvec{{ v}} }\) and \(\varvec{{ a}} \) similarly):

  • on \(\partial B_{r}({\varvec{{ q}} }(t^{\mathrm{r}}))\) the retarded time \(t^{\mathrm{r}}_{{\varvec{{ q}} }}(t,{\varvec{{ s}} }) = t-\frac{1}{c} r = t^{\mathrm{r}}\) is constant;

  • the vectors \({\varvec{{ q}} }(t^{\mathrm{r}})\), \({\varvec{{ v}} }(t^{\mathrm{r}})\), and \(\varvec{{ a}} (t^{\mathrm{r}})\) are constant during the integration over \(\partial B_{r}({\varvec{{ q}} }(t^{\mathrm{r}}))\);

  • for \({\varvec{{ s}} }\in \partial B_{r}({\varvec{{ q}} }(t^{\mathrm{r}}))\), we have \({\varvec{{ s}} }= r\, {\varvec{{ n}} }({\varvec{{ q}} }(t^{\mathrm{r}}),{\varvec{{ s}} }) + {\varvec{{ q}} }\big (t^{\mathrm{r}}\big )\);

  • for \({\varvec{{ s}} }\in \partial B_{r}({\varvec{{ q}} }(t^{\mathrm{r}}))\) the unit vector \({\varvec{{ n}} }({\varvec{{ q}} }(t^{\mathrm{r}}),{\varvec{{ s}} })=\big (\sin \vartheta \cos \varphi , \sin \vartheta \sin \varphi , \cos \vartheta \big )\).

It follows that on \(\partial B_{r}({\varvec{{ q}} }(t^{\mathrm{r}}))\) the vectors \(\varvec{\pi }_{\varvec{\xi }}^{[k]}\big (t,{\varvec{{ s}} }_{{\varvec{{ q}} }}(r,\vartheta ,\varphi )\big )\) are bounded continuous functions of \(\vartheta \) and \(\varphi \). Thus the angular integrations at r.h.s. (A.7) can be carried out to yield

$$\begin{aligned} \displaystyle \int _{B_{ct}({\varvec{{ q}} }_0)} \left[ \tfrac{\textstyle \varvec{\pi }_{\varvec{\xi }_n}^{[k]}(t,{\varvec{{ s}} })}{\left| {\varvec{{ s}} }-{\varvec{{ q}} }_n\big (t^{\mathrm {ret}}_{\varvec{\xi }_n}(t,{\varvec{{ s}} })\big ) \right| ^k}- \tfrac{\textstyle \varvec{\pi }_{\varvec{\xi }_n^\circ }^{[k]} (t,{\varvec{{ s}} })}{\left| {\varvec{{ s}} }-{\overline{\varvec{{ q}} }}_n\big (t^{\mathrm {ret}}_{{\overline{\varvec{{ q}} }}_n}(t,{\varvec{{ s}} })\big ) \right| ^k} \right] \mathrm {d}^3{s} = \!\! \displaystyle \int _0^{ct}\! \Bigl [ \widetilde{\mathbf {Z}}_{\varvec{\xi }_n}^{[k]}\big (t,r\big ) -\! \widetilde{\mathbf {Z}}_{\varvec{\xi }_n^\circ }^{[k]}\big (t,r\big )\Bigr ] r^{2-k} \mathrm {d}{r} . \end{aligned}$$
(A.8)

The vector functions \(\widetilde{\mathbf {Z}}_{\varvec{\xi }}^{[k]}(t,r)\) depend on the maps \(t'\mapsto {\varvec{{ q}} }(t')\) and \(t'\mapsto {\varvec{{ v}} }(t')\) between \(t'=0\) and \(t'=t^{\mathrm{ret}}_{{\varvec{{ q}} }}(t,{\varvec{{ s}} })=t^{\mathrm{r}}\), through the \(\mathrm {d}{t'}\) integrals over the Bessel function kernels, through which they also depend on the initial data \({\varvec{{ q}} }(0)\) and \({\varvec{{ v}} }(0)\) (recall that the integrations over \(t'<0\) involve an unaccelerated auxiliary motion determined by the initial data \({\varvec{{ q}} }(0)\) and \({\varvec{{ v}} }(0)\)). They also depend on t and r, explicitly through the Bessel function kernels (2.24) and (2.19) (recall also the third bullet point above), and implicitly through the dependence on \(t^{\mathrm{r}} = t-r/c\) in: (a) the vectors \({\varvec{{ q}} }(t^{\mathrm{r}})\), \({\varvec{{ v}} }(t^{\mathrm{r}})\), and (when \(k=1\)) \(\varvec{{ a}} (t^{\mathrm{r}})\), and (b) the upper limit of integration of the integrals over the Bessel function kernels.

Next, by a change of integration variable from r to \(t^{\mathrm{r}}= t-r/c\) we eliminate the implicit t dependence from the integrands at r.h.s.(A.8). Writing \(\widetilde{\mathbf {Z}}_{\varvec{\xi }}^{[k]}\big (t,r\big ) = {\mathbf {Z}}_{\varvec{\xi }}^{[k]}\big (t,t^{\mathrm{r}}\big )\), this yields (2.25).

We thus arrive at the “self”-field force on the n-th point charge source of the MBLTP field equations, given for \(t>0\) by the negative t derivative of (2.25), viz.

$$\begin{aligned}&-\tfrac{16\pi ^2}{e_\alpha ^2}{\textstyle \frac{\mathrm {d}}{\mathrm {d}t}}{\displaystyle \int _{B_{ct}({\varvec{{ q}} }_n(0))}\!\! \left( \varvec{\Pi }^{\mathrm{field}}_{\alpha ,n}(t,{\varvec{{ s}} }) -{\varvec{\Pi }}^{\mathrm{field}}_{\alpha ,n} (0,{\varvec{{ s}} }-{\overline{\varvec{{ q}} }}^\alpha _n(t))\right) \!\mathrm {d}^3{s}} \;\nonumber \\&\quad = {\mathbf {Z}}_{\varvec{\xi }_n}^{[2]}(t,t) + {\mathbf {Z}}_{\varvec{\xi }_n^\circ }^{[2]}(t,t) \,\nonumber \\&\qquad - \;{\textstyle \sum \limits _{0\le k\le 1}}\; c^{2-k}(2-k) \displaystyle \int _0^{t}\! \Bigl [{\mathbf {Z}}_{\varvec{\xi }_n}^{[k]}\big (t,t^{\mathrm{r}}\big ) -\!{\mathbf {Z}}_{\varvec{\xi }_n^\circ }^{[k]}\big (t, t^{\mathrm{r}}\big )\Bigr ] (t- t^{\mathrm{r}})^{1-k} \mathrm {d}{t^{}r} \nonumber \\&\qquad - \;{\textstyle \sum \limits _{0\le k\le 2}}\; c^{2-k} \displaystyle \int _0^{t}\! \Bigl [{\textstyle {\frac{\partial }{\partial t}}}{\mathbf {Z}}_{\varvec{\xi }_n}^{[k]} \big (t,t^{\mathrm{r}}\big ) -\!{\textstyle {\frac{\partial }{\partial t}}}{\mathbf {Z}}_{\varvec{\xi }_n^\circ }^{[k]} \big (t, t^{\mathrm{r}}\big )\Bigr ] (t- t^{\mathrm{r}})^{2-k} \mathrm {d}{t^{}\mathrm{r}} . \end{aligned}$$
(A.9)

Remark A.1

Thus the integrals in the second and third line at r.h.s.(A.9) are well defined Riemann integrals.

Remark A.2

Since \(t^{\mathrm {r}}\) is a mute integration variable at r.h.s.(A.9), the \(\frac{\partial }{\partial t}\) derivative in the third line at r.h.s(A.9) does not act on it. In particular, it does not act on \({\varvec{{ q}} }_n(t^\mathrm {r})\), \({\varvec{{ v}} }_n(t^\mathrm {r})\), or \(\varvec{{ a}} _n(t^\mathrm {r})\) in any of the \({\mathbf {Z}}_{\varvec{\xi }_n}^{[k]}\big (t,t^{\mathrm {r}}\big )\). This leads to the important observation that the “self” force does not involve higher-than-second-order time derivates of \(t\mapsto {\varvec{{ q}} }(t)\).

Remark A.3

The derivative \(\frac{\partial }{\partial t}\) also does not act on \({\varvec{{ q}} }_n(t^\prime )\) or \({\varvec{{ v}} }_n(t^\prime )\) in the kernels \(\mathbf {K}_{\varvec{\xi }}(t',t,{\varvec{{ s}} }_{\varvec{{ q}} })\) and \(\mathrm {K}_{\varvec{\xi }}(t',t,{\varvec{{ s}} }_{\varvec{{ q}} })\). Thus the acceleration enters the “self” force only linearly, as \(\varvec{{ a}} _n(t^{\mathrm {r}})\), through \({\mathbf {Z}}_{\varvec{\xi }_n}^{[1]}\big (t,t^{\mathrm {r}}\big )\) in the second, and \(\frac{\partial }{\partial t}{\mathbf {Z}}_{\varvec{\xi }_n}^{[1]}\big (t,t^{\mathrm {r}}\big )\) in the third line at r.h.s.(A.9). This gives rise to the Volterra integral equation for the accelerations, mentioned in 2.3.

There is no purely light-like contribution to the third line at r.h.s.(A.9). The \(\frac{\partial }{\partial t}\) in the third line at r.h.s.(A.9) acts only on the explicit t-dependence in \(\mathbf {K}_{\varvec{\xi }}\) and in \(\mathrm {K}_{\varvec{\xi }}\) in the mixed light- & time-like and purely time-like contributions to \({\mathbf {Z}}_{\varvec{\xi }_n}^{[k]}\big (t,t^{\mathrm {r}}\big )\). The identity

$$\begin{aligned} \frac{1}{x} \frac{\mathrm {d}}{\mathrm {d}x}\frac{J_\nu (x)}{x^\nu } = - \frac{J_{\nu +1}(x)}{x^{\nu +1}} \end{aligned}$$
(A.10)

(see §10.6(ii) in [17]) yields these derivatives easily as

$$\begin{aligned} {\frac{\partial }{\partial t}}\mathrm {K}_{\varvec{\xi }}(t',t,{\varvec{{ s}} }_{\varvec{{ q}} })&= -\varkappa c^2 \tfrac{J_2\!\bigl (\varkappa \sqrt{c^2(t-t')^2-|{\varvec{{ s}} }_{\varvec{{ q}} }-{\varvec{{ q}} }(t')|^2 }\bigr )}{{c^2(t-t')^2-|{\varvec{{ s}} }_{\varvec{{ q}} }-{\varvec{{ q}} }(t')|^2}^{}} (t-t'), \end{aligned}$$
(A.11)
$$\begin{aligned} {\textstyle \frac{\partial }{\partial t}}\mathbf {K}_{\varvec{\xi }}(t',t,{\varvec{{ s}} }_{\varvec{{ q}} })&=-\varkappa c^2\tfrac{J_3\!\bigl (\varkappa \sqrt{c^2(t-t')^2 -|{\varvec{{ s}} }_{\varvec{{ q}} }-{\varvec{{ q}} }(t')|^2 }\bigr )}{(c^2(t-t')^2-|{\varvec{{ s}} }_{\varvec{{ q}} }-{\varvec{{ q}} }(t')|^2)^{3/2} } (t-t') \left( {\varvec{{ s}} }_{\varvec{{ q}} }-{\varvec{{ q}} }(t')- {\varvec{{ v}} }(t')(t-t')\right) \nonumber \\&\quad - {\varvec{{ v}} }(t') \tfrac{J_2\!\bigl (\varkappa \sqrt{c^2(t-t')^2-|{\varvec{{ s}} }_{\varvec{{ q}} }-{\varvec{{ q}} }(t')|^2 }\bigr )}{{c^2(t-t')^2-|{\varvec{{ s}} }_{\varvec{{ q}} }-{\varvec{{ q}} }(t')|^2}^{} }, \end{aligned}$$
(A.12)

where \({\varvec{{ s}} }_{\varvec{{ q}} }= r{\varvec{{ n}} }+{\varvec{{ q}} }(t^\mathrm {r})\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elskens, Y., Kiessling, M.KH. Microscopic Foundations of Kinetic Plasma Theory: The Relativistic Vlasov–Maxwell Equations and Their Radiation-Reaction-Corrected Generalization. J Stat Phys 180, 749–772 (2020). https://doi.org/10.1007/s10955-020-02519-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-020-02519-x

Keywords

Navigation